

Course Outline Form

ODD SEMESTER 2019

Dear Student: Course outlines are intended to provide students with an overall plan for a course to enable them to function efficiently and effectively in the course.

Academic Programs
BSc Biochemistry
EMEA College
Kondotty

Course Outline: Intermediary Metabolism 1 (2018-2019)

Name of the Stream Science

Name of the Programme BSc Biochemistry

Name of the Course Intermediary Metabolism 1

Nature of the Course Core Course

Semester Fifth

Lecturer(s) Sulfikar Ali M

Name of the Coordinator

Year 2018-2019

No of Credits 3

No of Contact Hours 54

Course Description

Course Objectives

This course will introduce the details in metabolic pathways of carbohydrates and its regulation, electron transport chain and oxidative phosphorylation

1.learn essentially all of the reactions in the glycolytic pathway (substrates

and products)

2.understand where the free energy changes come from which allow

production of ATP in glycolysis

3. Know the activators and inhibitors of the major regulated enzymes in

glycolysis and understand the metabolic logic of their function.

4. What is "substrate level" phosphorylation?

 $5. \mbox{Understand}$ the connection between glycolysis and glycogen synthesis &

gluconeogenesis

6.relationship between glycolysis, gluconeogenesis and the pentose

pathway

7. Understand how the ETC is coupled with ATP synthesis

To understand the importance of carbohydrates as storage molecules and as

structural component

• Understanding the importance of high energy compounds, electron

transport chain,

Course Outcome synthesis of ATP under aerobic and anaerobic conditions.

• To acquire knowledge related to the role of TCA cycle in central carbon

metabolism.

importance of anaplerotic reactions and redox balance.

· Students will be exposed with the fact energy transduction pathways are

highly regulated

Assignments

Homeworks

Class Tests

Assessment Method

Unit Tests

Term Exam

Seminars

Lectures

Cooperative Learning

LMS

Teaching Methods Used

Classroom Activities

Seminars

Tutorials

Powerpint Slides

Textbook

Principles of biochemistry, by Albert Lehninger, David L Nelson, Michael M Cox, CBS Publishers & Distributors Delhi ISBN 81-239-0295-6.

Biochemistry: Donald. Voet and Judith G. Voet John Wiley & sons Inc. New York Chischester Brisbane, Toronto, singapore ISBN 0-471-58651-X

1.Biochemistry by Lubert Stryer, W.H Freeman and Company, New York

References

- ISBN 0-7167-2009-4, 4th Edition.

 2. Principles of biochemistry, by Albert Lehninger, David L Nelson, Michael M Cox,
- CBS Publishers & Distributors Delhi ISBN 81-239-0295-6.

 3. Biochemistry: Donald. Voet and Judith G. Voet John Wiley & sons Inc. New York Chischester Brisbane, Toronto, singapore ISBN 0-471-58651-X

http://nmc.itc.virginia.edu/pmh3g/enter.htm

http://www.compusmart.ab.ca/plambeck/che/p102/p02051.htm

http://www.gwu.edu/~mpb/glycolysis3d.htm

http://web.indstate.edu/thcme/mwking/glycolys.html#reactions http://web.indstate.edu/thcme/mwking/glycogen.html#catabolism

Internet Resources

http://www.kumc.edu/research/medicine/biochemistry/bioc800/car-lobj.htm http://www.kumc.edu/research/medicine/biochemistry/bioc800/opening.html

http://www.gwu.edu/~mpb/index.html http://www.bic.nus.edu.sg/biocomp/list.html

http://ecocyc.pangeasystems.com/~pkarp/pathways.html

http://biochem.boehringer-mannheim.com/techserv/metmap.htm

Internal Exam Pattern

Items	Marks/20	Marks/15
Assignment	4	3
Test Paper(s)/Viva voce	8	6
Seminar/Presentation	4	3
Class Room Participation based on Attendance	4	3
Total	20	15

External Exam Pattern

Question Type	No of Question	Marks/Question	Total Marks
Short Questions(2-3 Sentences)	15	2	Ceiling 25
Paragraph / Problem Type	8	5	Ceiling 35
Essay Type	2 out of 4	10	20
Total			80
Time			2.5 hrs

Name of the Course: Intermediary Metabolism I

Knowledge

Academic and Intellectual Skills

Self Learning

Cognitive Skills

Professional Skills

Communication Skills

Graduate Attributes Critical and Analytical Skills

Research Skills

Personal Skills

Creative Thinking

Application Skills

Attitude and Values

Social Responsibility

Ethical Commitment

Course Schedule

Bioenergetics: Introduction, Biological oxidation, Role of high energy phosphates in energy	Week 1
transfer -redox potential	Week 2
Intermediary Metabolism: Catabolism and anabolism, metabolic pathways, experimental	Week 3
approaches in metabolism. Compartmentalization of metabolic pathways in cells and energy conversation. Approaches to study metabolism: using intact animals, bacterial	Week 4
mutants, in vitro, and radioactive isotopes.	Week 5

	Week 7
Carbohydrate metabolism (Structures, energetics and regulation of pathways) : Glycolysis (aerobic	Week 8
and anaerobic), entry of other sugars into glycolytic pathway, TCA cycle, HMP shunt, gluconeogenesis, galactose and fructose metabolism, anaplerotic reactions,	Week 9
glyoxalate cycle. Carbohydrate synthesis, Synthesis of starch, cellulose and peptidoglycans Glycogen	Week 10
Metabolism:	Week 11
Glycogenesis, glycogenolysis, regulation- Cori cycle (structures & regulation),	Week 12
Electron Transport Chain: Structure of mitochondria, sequence of electron carriers:	
NADHubiquinone	Week 14
dehydrogenase, Succinate dehydrogenase, cytochrome reductase and cytochrome oxidase (outline of electron transport chain), Stucture of ATP synthase -inhibitors of electron	Week 15
transport chain.Oxidative phosphorylation: Sites of ATP production, Chemiosmotic	Week 16
theory (an outline), P/O ratio, inhibitors and uncouplers, transport of reducing potentials into mitochondria.	Week 17

Contact Details

Name Sulfikar Ali M

Phone 9746381148

Email sulfikarali@emeacollege.ac.in

Website www.emeacollege.ac.in