
 JDBC Architecture

 JDBC Architecture

Type 1 JDBC−ODBC Bridge Drivers

Type 1 drivers use a bridge technology to connect a
Java client to an ODBC database system. The

JDBC−ODBC Bridge from Sun and InterSolv is the
only extant example of a Type 1 driver. Type 1

drivers require some sort of non−Java software to
be installed on the machine running your code, and

they are implemented using native code.

A list of currently available JDBC
drivers is available at
http://java.sun.com/products/jdbc/jdb
c.drivers.html.

When you are selecting a driver, you need to
balance speed, reliability, and portability.
Different applications have different needs.

Type 2 Native−API Partly Java Drivers

Type 2 drivers use a native code library to
access a database, wrapping a thin layer of
Java around the native library. Type 2 drivers
are implemented with native code, so they
may perform better than all−Java drivers,
but they also add an element of risk, as a
defect in the native code can crash the Java
Virtual Machine.

Before you can use a driver, the driver must be registered with

the JDBC DriverManager. This is typically done by loading the

driver class using the Class.forName() method:

try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Class.forName("com.oracle.jdbc.OracleDriver");

}

catch (ClassNotFoundException e) {

 /* Handle Exception */

}

Establishing a Connection
•DriverManager: This fully implemented class connects an

application to a data source, which is specified by a database

URL. When this class first attempts to establish a connection,

it automatically loads any JDBC 4.0 drivers found within the

class path.

•DataSource: This interface is preferred

over DriverManager because it allows details about the

underlying data source to be transparent to your application.

A DataSource object's properties are set so that it represents a

particular data source.

Using the DriverManager Class

Connecting to your DBMS with the
DriverManager class involves calling the method
DriverManager.getConnection.

public Connection getConnection() throws SQLException {

 Connection conn = null;

 Properties connectionProps = new Properties();

 connectionProps.put("user", this.userName);

 connectionProps.put("password", this.password);

 if (this.dbms.equals("mysql")) {

 conn = DriverManager.getConnection(

 "jdbc:" + this.dbms + "://" +

 this.serverName +

 ":" + this.portNumber + "/",

 connectionProps);

 } else if (this.dbms.equals("derby")) {

 conn = DriverManager.getConnection(

 "jdbc:" + this.dbms + ":" +

 this.dbName +

 ";create=true",

 connectionProps);

 }

 System.out.println("Connected to database");

 return conn;

}

The method DriverManager.

The java.sql.Connection object, which encapsulates a single

connection to a particular database,

forms the basis of all JDBC data−handling code. An application

can maintain multiple connections, up to the limits imposed by the

database system itself. A standard small office or web server Oracle

installation can support 50 or so connections, while a major

corporate database could host several thousand. The

DriverManager.getConnection() method creates a connection:

Connection con = DriverManager.getConnection("url", "user",

"password");

The getConnection() method has two other
variants that are less frequently used. One variant
takes a single String argument and tries to create
a connection to that JDBC URL without a
username or password.

The other version takes a JDBC URL and a
java.util.Properties object that contains a set of

name/value pairs. You generally need to provide
at least username=value and password=value
pairs.

close() method.

This frees up any memory being used by the
object, and it releases any other database
resources the connection may be holding on to.
(cursors, handles, and so on)

JDBC URLs

 jdbc:driver:databasename

 Oracle JDBC−Thin driver uses a URL of the
form:

 jdbc:oracle:thin:@site:port:database

 JDBC−ODBC Bridge uses:

 jdbc:odbc:datasource;odbcoptions

 public static void main(String[] args) {

 try { // This is where we load the driver

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 }

 catch (ClassNotFoundException e) {

 System.out.println("Unable to load Driver Class");

 return; }

 try { // All database access is within a try/catch block. Connect to database,

 // specifying particular database, username, and password

 Connection con =
DriverManager.getConnection("jdbc:odbc:companydb", "", "");

 // Create and execute an SQL Statement

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT FIRST_NAME FROM
EMPLOYEES");

// Display the SQL Results
 while(rs.next()) {
 System.out.println(rs.getString("FIRST_NAME"));
 }
 // Make sure our database resources are released
 rs.close();
 stmt.close();
 con.close();
 }
 catch (SQLException se) {
 // Inform user of any SQL errors
 System.out.println("SQL Exception: " + se.getMessage());
 se.printStackTrace(System.out);
 }

 }
}

Statement

 A Statement is an interface that represents a
SQL statement.

 execute Statement objects, and they generate
ResultSet objects, which is a table of data
representing a database result set.

 we need a Connection object to create a
Statement object.

 Statement

Represents a basic SQL statement

 PreparedStatement

Represents a precompiled SQL statement, which can
offer improved performance

 CallableStatement

Allows JDBC programs complete access to stored
procedures within the database itself

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT * FROM
CUSTOMERS");

 Statement also provides an executeUpdate() method, for
running SQL statements that do not return results, such as
the UPDATE and DELETE statements.

 executeUpdate() returns an integer that indicates the
number of rows in the database that were altered.

 the execute() method of Statement.

 This method returns true if there is a result associated with the
statement.

Statement stmt = con.createStatement();

if(stmt.execute(sqlString)) {

 ResultSet rs = stmt.getResultSet();

 // display the results }

else {

System.out.println("Rowsupdated:"+stmt.getUpdateCount());

}

It is important to remember that a Statement
object represents a single SQL statement. A call to

executeQuery(), executeUpdate(), or execute()
implicitly closes any active ResultSet associated
with the Statement.

Using Prepared Statements

If you want to execute a
Statement object many
times, it usually reduces
execution time to use a
PreparedStatement object
instead.

Prepared Statements

 Allows you to precompile your SQL and run
it repeatedly, adjusting specific parameters
as necessary.

 PreparedStatement pstmt =
con.prepareStatement("INSERT INTO
EMPLOYEES (NAME, PHONE) VALUES (?,
?)");

 pstmt.clearParameters();
 pstmt.setString(1, "Jimmy Adelphi");
 pstmt.setString(2, "201 555−7823");
 pstmt.executeUpdate();

CallableStatement
The CallableStatement interface is the JDBC object that
supports stored procedures. The

Connection class has a prepareCall() method that is very
similar to the prepareStatement()

method we used to create a PreparedStatement. Because
each database has its own syntax for accessing

stored procedures, JDBC defines a standardized escape
syntax for accessing stored procedures with

CallableStatement. The syntax for a stored procedure that
does not return a result set is:

CallableStatment cstmt = con.prepareCall("{call sp_interest(?,?)}");

cstmt.registerOutParameter(2, Types.FLOAT);

cstmt.setInt(1, accountID);

cstmt.setFloat(2, 2343.23);

cstmt.execute();

out.println("New Balance:" + cstmt.getFloat(2));

Resultset
 Scrollable ResultSet
Stmt=DB.createStatement(TYPE_SCROLL_INSENSITIVE)

TYPE_SCROLL_INSENSITIVE
TYPE_SCROLL_SENSITIVE
TYPE_FORWARD_ONLY
first()
last()
previouse()
absolute()
relative()
getRow()

Updatable Resultset

CONCUR_UPDATABLE

CONCUR_READ_ONLYSTMT=Db.createStatemen
t(ResultSet. CONCUR_UPDATABLE)

Multiple Result Sets

 It is possible to write a SQL statement that returns
more than one ResultSet or update count .The
Statement object supports this functionality via the
getMoreResults() method.

 Calling this method implicitly closes any existing
ResultSet and moves to the next set of results for the
statement.

 getMoreResults() returns true if there is another
ResultSet available to be retrieved by getResultSet().
However, the method returns false if the next
statement is an update, even if there is another set of
results waiting farther down the line. To be sure
you've processed all the results for a Statement, you
need to check that getMoreResults() returns false and
that getUpdateCount() returns −1.

 getMoreResults()

 SQL statement that returns more than one ResultSet or update

count. Calling this method implicitly closes any existing ResultSet
and moves to the next set of results for the statement.
getMoreResults() returns true if there is another ResultSet
available to be retrieved by getResultSet(). However, the method
returns false if the next statement is an update, even if there is
another set of results waiting farther down the line. To be sure

you've processed all the results for a Statement, you need to check
that getMoreResults() returns false and that getUpdateCount()
returns −1.

Statement unknownSQL = con.createStatement();
unknownSQL.execute(sqlString);
while (true) {
 rs = unknownSQL.getResultSet();
 if(rs != null)
 // display the results
 else
 // process the update data
 // Advance and quit if done
 if((unknownSQL.getMoreResults() == false) &&
 (unknownSQL.getUpdateCount() == −1))
 break;
}

