JDBC Architecture

S e ——

ResultSet ResuliSet l ResuliSet
Statement Pupurld!i-lnl-mlnfl CallableS$tatement

Connection

[

li

Orocle N N Sybase
Dotabase Datobuse

ODBC
Dotabase

JDBC Driver Types

JDBC driver specification classifies JDBC drivers into four groups. Each group is referred
to as a JDBC driver type and addresses a specific need for communicating with various
DBMSs. The JDBC driver types are as follows:

Type 1 JDBC-to-ODBC Driver

Microsoft was the first company to devise a way to create a DBMS-independent database
program when they created the Open Database Connection (ODBC). ODBC is the basis
from which Sun Microsystems, Inc. created JDBC. Both ODBC and JDBC have similar
driver specifications and an API. The JDBC-to-ODBC driver, also called the JDBC/
ODBC Bridge, is used to translate DBMS calls between the JDBC specification and
the ODBC specification. The JDBC-to-ODBC driver receives messages from a J2EE
component that conforms to the JDBC specification as discussed previously in this chapter.
Those messages are translated by the JDBC-to-ODBC driver into the ODBC message
format, which is then translated into the message format understood by the DBMS.
However, avoid using the JDBC/ODBC Bridge in a mission-critical application because
the extra translation might negatively impact performance.

Type 1 JDBC-ODBC Bridge Drivers

Type 1 drivers use a bridge technology to connect a
Java client to an ODBC database system. The

JDBC-ODBC Bridge from Sun and InterSolv is the
only extant example of a Type 1 driver. Type 1

drivers require some sort of non-Java software to
be installed on the machine running your code, and

they are implemented using native code.

Type 2 Java/Native Code Driver

The Java/Natve Code driver usesfava classs to generate platform-pecific code~tha
5 code only undersfood byaspeu‘lc DBMS. The manatacturer ofthe DBMS provides
both the Java Native Code driver and AP casses o the 2EE component can generat
theplattorm-speciic code. The obvious disadvantage of using a ava/Native Code
driver i the lossof some portabilty of code. The APl classes forthe Java/Native
Caode drver probably won't work with another manufacturers DBMS

Type 3 JDBC Driver
The Type 3 |DBC driver, also referred to as the Java Protocol, is the most commonly
used JDBC driver. The Type 3 |DBC driver converts SQL queries into DBC-formatted

statements. The JDBC-formatted statements are translated into the format required by
the DBMS

Type 4 JDBC Driver

Type 4 JDBC driver is also known as the Type 4 database protocol. This driver is similar

to the Type 3 JDBC driver except SQL queries are translated into the format required by
the DBMS. SQL queries do not need to be converted to JDBC-formatted systems. This
Is the fastest way to communicate SQL queries to the DBMS.

A list of currently available JDBC
drivers IS available at

http://java.sun.com/products/jdbc/jdb
c.drivers.html.

When you are selecting a driver, you need to
balance speed, reliability, and portability.
Different applications have different needs.

Type 2 Native—API Partly Java Drivers

Type 2 drivers use a native code library to
access a database, wrapping a thin layer of
Java around the native library. Type 2 drivers
are implemented with native code, so they
may perform better than all-Java drivers,
but they also add an element of risk, as a
defect in the native code can crash the Java
Virtual Machine.

JDBC Packages

The JDBC APLis contained in two packages. The first package is called java. sql
and contains core Java data objects of the [DBC APL These include Java data objects
that provide the basics for connecting to the DBMS and interacting with data stored in
the DBMS. java. sql is part of the J2SE

The other package that contains the JDBC APl is javax. sql, which extends
java.sql and is in the J2EE. Included in the javax. sql package are Java data objects
that interact with Java Naming and Directory Interface (JNDI) and Java data objects that
manage connection pooling, among other advanced JDBC features

A Brief Overview of the JDBC Process

Although each J2EE component is different,]2EE components use a similar process for
Interacting with a DBMS. This process is divided into five routines. These include:

B Loading the JDBC driver
B Connecting to the DBMS
B Creating and executing a statement

B Processing data returned by the DBMS
B Terminating the connection with the DBMS

Betfore you can use a driver, the driver must be registered with
the JDBC DriverManager. This is typically done by loading the
driver class using the Class.forName() method:

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Class.forName("com.oracle.jdbc.OracleDriver");

h

catch (ClassNotFoundException €) {
/* Handle Exception */

h

Establishing a Connection

*DriverManager: This fully implemented class connects an
application to a data source, which 1s specified by a database
URL. When this class first attempts to establish a connection,
it automatically loads any JDBC 4.0 drivers found within the
class path.

*DataSource: This interface is preferred
over DriverManager because it allows details about the
underlying data source to be transparent to your application.
A DataSource object's properties are set so that it represents a
particular data source.

Using the DriverManager Class

Connecting to your DBMS with the
DriverManager class involves calling the method
DriverManager.getConnection.

public Connection getConnection() throws SQLException {
Connection conn = null;
Properties connectionProps = new Properties();
connectionProps.put("user", this.userName);
connectionProps.put("password", this.password);

if (this.dbms.equals("mysql")) {
conn = DriverManager.getConnection(
"idbc:" + this.dbms + "://" +
this.serverName +
":" + this.portNumber +"/",
connectionProps);
} else if (this.dbms.equals("derby")) {
conn = DriverManager.getConnection(
"jdbc:" + this.dbms + ":" +
this.dbName +
"-create=true",

connectionProps);

The java.sql.Connection object, which encapsulates a single
connection to a particular database,

forms the basis of all JDBC data—handling code. An application
can maintain multiple connections, up to the limits imposed by the
database system itself. A standard small office or web server Oracle
installation can support 50 or so connections, while a major
corporate database could host several thousand. The

DriverManager.getConnection() method creates a connection:

Connection con = DriverManager.getConnection("url", "user",
" "m .
password");

The getConnection() method has two other
variants that are less frequently used. One variant
takes a single String argument and tries to create
a connection to that JDBC URL without a
username or password.

The other version takes a JDBC URL and a
java.util.Properties object that contains a set of

name/value pairs. You generally need to provide
at least username=value and password=value
pairs.

close() method.

This frees up any memory being used by the
object, and it releases any other database
resources the connection may be holding on to.
(cursors, handles, and so on)

JDBC URLs

» jdbc:driver:databasename

> Oracle JDBC-Thin driver uses a URL of the
form:

jdbc:oracle:thin: @site:port:database
» JDBC-ODBC Bridge uses:

jdbc:odbc:datasource;odbcoptions

public static void main(String[] args) {

try { // This is where we load the driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch (ClassNotFoundException e) {
System.out.printin("Unable to load Driver Class");
return; }

try { // All database access is within a try/catch block. Connect to database,

// specifying particular database, username, and password

Connection con =
DriverManager.getConnection("jdbc:odbc:companydb”, "","");

// Create and execute an SQL Statement

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT FIRST_NAME FROM
EMPLOYEES");

// Display the SQL Results
while(rs.next()) {
System.out.printIn(rs.getString("FIRST _NAME"));

}
// Make sure our database resources are released
rs.close();
stmt.close();
con.close();

}

catch (SQLException se) {
// Inform user of any SQL errors
System.out.printIn("SQL Exception: " + se.getMessage());
se.printStackTrace(System.out);

}

Statement

» A Statement is an interface that represents a
SQL statement.

» execute Statement objects, and they generate
ResultSet objects, which is a table of data
representing a database result set.

» we need a Connection object to create a
Statement object.

» Statement
Represents a basic SQL statement
» PreparedStatement

Represents a precompiled SQL statement, which can
offer improved performance

» CallableStatement

Allows JDBC programs complete access to stored
procedures within the database itself

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT * FROM
CUSTOMERS");

» Statement also provides an executeUpdate() method, for
running SQL statements that do not return results, such as
the UPDATE and DELETE statements.

» executeUpdate() returns an integer that indicates the
number of rows in the database that were altered.

» the execute() method of Statement.
This method returns true if there is a result associated with the
statement.
Statement stmt = con.createStatement();
if(stmt.execute(sqlString)) {
ResultSet rs = stmt.getResultSet();
// display the results }

else {
System.out.printin("Rowsupdated:"+stmt.getUpdateCount());

}

It is important to remember that a Statement
object represents a single SQL statement. A call to

executeQuery(), executeUpdate(), or execute()
implicitly closes any active ResultSet associated

with the Statement.

Statement DataRequest;

ResultSet Results;

try |
String query = "SELECT * FROM Customers';
DataRequest = Database.createStatement();
DataRequest = Db,createStatement (),
Results = DataRequest.executeQuery (query);
DataRequest.close();

Using Prepared Statements

If you want to execute a
Statement object many
times, it usually reduces
execution time to use a
PreparedStatement object
instead

vV V VYV V

Prepared Statements

Allows you to precompile your SQL and run
it repeatedly, adjusting specific parameters
as necessary.

PreparedStatement pstmt =
con.prepareStatement("INSERT INTO
EMPLOYEES (NAME, PHONE) VALUES (?,

?)");

pstmt.clearParameters();
ostmt.setString(1, "Jimmy Adelphi");
ostmt.setString(2, "201 555-7823");
ostmt.executeUpdate();

Table 2-1. SQL Data Types, Java Types, and Default getXXX() Methods

SQL Data Type Java Type GetXXX() Method
CHAR String getString ()
VARCHAR String getString()
LONGVARCHAR _ [String getString()
NUMERIC Java.math.BigDecimal |getBigDecimal ()
DECIMAL Java.math.BigDecimal |getBigDecimal ()
BIT Boolean (boolean) getBoolean ()
TINYINT Integer [byte} getByte ()
SMALLINT Integer (short) getShort ()
INTEGER Integer (int) getInt ()

BIGINT Long (long) getLong ()

REAL Float (float) getFloat ()
FLOAT Double (double) getDouble ()
DOUBLE Double (double) getDauble{}
BINARY bytel[] getBytes ()
VARBINARY byvte[] getByvtes ()
LONGVARBINARY |byvtel] getBytes ()
DATE java.sqgl.Date getDate ()

TIME Jjava.sqgl.Time getTime ()
TIMESTAME Jjava.sagl.Timestamp getTimestamp ()

CallableStatement
The CallableStatement interface is the JDBC object that
supports stored procedures. The

Connection class has a prepareCall() method that is very
similar to the prepareStatement()

method we used to create a PreparedStatement. Because
each database has its own syntax for accessing

stored procedures, JDBC defines a standardized escape
syntax for accessing stored procedures with

CallableStatement. The syntax for a stored procedure that
does not return a result set is:

CallableStatment cstmt = con.prepareCall("{call sp_interest(?,?)}");
cstmt.registerOutParameter(2, Types.FLOAT);

cstmt.setlnt(1, accountlID);

cstmt.setFloat(2,2343.23);

cstmt.execute();

out.printin("New Balance:" + cstmt.getFloat(2));

Resultset

» Scrollable ResultSet
Stmt=DB.createStatement(TYPE_SCROLL INSENSITIVE)

TYPE_SCROLL_INSENSITIVE
TYPE_SCROLL_SENSITIVE
TYPE_FORWARD_ONLY
first()

last()

previouse()

absolute()

relative()

getRow()

Updatable Resultset

CONCUR UPDATABLE

CONCUR_READ_ ONLYSTMT=Db.createStatemen
t(ResultSet. CONCUR_UPDATABLE)

IVIUITIple Result Sets

» It is possible to write a SQL statement that returns
more than one ResultSet or update count .The
Statement object supports this functionality via the
getMoreResults() method.

» Calling this method implicitly closes any existing
ResultSet and moves to the next set of results for the
statement.

» getMoreResults() returns true if there is another
ResultSet available to be retrieved by getResultSet().
However, the method returns false if the next
statement is an update, even if there is another set of
results waiting farther down the line. To be sure
you've processed all the results for a Statement, you
need to check that getMoreResults() returns false and
that getUpdateCount() returns -1.

getMoreResults()

SQL statement that returns more than one ResultSet or update

count. Calling this method implicitly closes any existing ResultSet
and moves to the next set of results for the statement.
getMoreResults() returns true if there is another ResultSet
available to be retrieved by getResultSet(). However, the method
returns false if the next statement is an update, even if there is
another set of results waiting farther down the line. To be sure

you've processed all the results for a Statement, you need to check
that getMoreResults() returns false and that getUpdateCount()
returns -1.

Statement unknownSQL = con.createStatement();
unknownSQL.execute(sqlString);
while (true) {

rs = unknownSQL.getResultSet();

if(rs !=null)
// display the results
else

// process the update data
// Advance and quit if done
if((unknownSQL.getMoreResults() == false) &&
(unknownSQL.getUpdateCount() == -1))
break;

}

