

LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK (LOCF) FOR UNDERGRADUATE EDUCATION

B.Sc. MICROBIOLOGY

PG DEPARTMENT OF MICROBIOLOGY

EMEA College of Arts and Science, Kondotty

Kumminiparamaba PO, Malappuram Dt. Kerala – India PIN :673638; Aided by Govt. of Kerala & Affiliated to the University of Calicut, Re-accredited with A Grade (3.13 CGPA)

Website: https://emeacollege.ac.in/ | E-mail: mail@emeacollege.ac.in | Phone: 0483 2712030

CONTENTS

Sl. No	Description
1	Introduction
2	Vision and Mission of the College
3	Vision and Mission of the Department of Microbiology
4	Introduction to the Learning Outcomes-Based Curriculum Framework (LOCF)
	for the BSc.Microbiology Programme
5	Graduate Attributes for the BSc.Microbiology Programme
6	Graduate Attributes – Department of Microbiology
7	Programme Outcome (PO) - BSc.Microbiology
8	Course Outcome (CO)
9	CO – PO Mapping
10	Teaching Learning Process – Description
11	Conclusion

 $\label{eq:learning} Learning \ Outcomes-Based \ Curriculum \ Framework \ (LOCF) - B.Sc \ Microbiology$

INTRODUCTION

EMEA College of Arts and Science, Kondotty, is fast emerging as a resourceful destination for higher studies in Malabar, spreading the fragrance of education in the society. The college offers up-to-date, advanced, and job-oriented programmes in the vast expanding horizon of humanities, commerce, and science and technology. The college – affiliated to the University of Calicut, is dedicated to nurturing academic excellence, fostering a culture of research and innovation, and promoting community engagement. Established with a commitment to high-quality education and holistic development, the College aligns its programs with the Learning Outcomes-Based Curriculum Framework (LOCF), ensuring that students acquire not only subject expertise but also skills relevant to real-world applications.

From an LOCF perspective, EMEA College's curriculum prioritizes outcome-based learning, aiming to produce graduates equipped with critical thinking, effective communication, cultural sensitivity, and social responsibility. The College's pedagogical approach integrates both theoretical knowledge and practical experience, creating a learning environment that responds to the dynamic needs of today's society. By mapping program outcomes (POs) and course outcomes (COs) in alignment with UGC's LOCF guidelines, EMEA College ensures that each course contributes to a cohesive learning journey that enhances employability, research capability, and lifelong learning.

In its pursuit of excellence, EMEA College fosters a supportive academic community that encourages students to engage deeply with their disciplines, appreciate diverse perspectives, and contribute meaningfully to their communities. Through this LOCF-aligned curriculum, the College aims to prepare its graduates to meet global challenges while remaining rooted in local values and responsibilities.

VISION AND MISSION OF THE COLLEGE

Vision

EMEA College envisions creating a transformative educational environment that inspires personal growth, social responsibility, and academic excellence. The College aims to become

a beacon of higher learning that empowers students to lead meaningful lives, equipped with the knowledge and skills to contribute positively to society.

Mission

Identifying and developing the talent of the youth and moulding them into useful citizens with due emphasize on right character formation is the avowed mission of EMEA College. The fulfilment of this lofty goal is the basis of educational programes formulated and pursued by the institution. The mission of EMEA College of Arts and Science includes the following core objectives:

- 1. **Quality Education**: To provide high-quality, inclusive education that fosters intellectual and personal growth, enabling students to reach their fullest potential.
- Social Responsibility: To cultivate a sense of responsibility toward the community, encouraging students to engage in social initiatives and contribute to societal wellbeing.
- 3. **Research and Innovation**: To promote a culture of research and innovation, encouraging critical inquiry, creative problem-solving, and continuous learning.
- 4. **Skill Development**: To equip students with essential life skills and competencies that enhance their employability and adaptability in a dynamic global environment.
- 5. **Community Empowerment**: To support the development of the local community through outreach and extension activities, addressing social and economic challenges.
- 6. **Sustainable Practices**: To foster sustainability and inclusivity within the College, embracing practices that promote environmental consciousness and ethical responsibility.

VISION AND MISSION OF THE PG DEPARTMENT OF MICROBIOLOGY Vision

The mission of the Post graduate department of Microbiology is to educate and train students in the discipline of Microbiology and to enhance the intellectual foundation and preparation of students for life in a complex, dynamic technological world. The specific goal of this

Learning Outcomes-Based Curriculum Framework (LOCF) - B.Sc Microbiology

department is to prepare both the graduate and post- graduate students with in-depth knowledge and research skills for professional careers in Microbiology.

Mission

The mission of the PG Department of Microbiology is to provide an outstanding academic and research-driven environment that nurtures scientific curiosity, critical thinking, and a passion for microbiology. We are committed to:

- 1. Academic Excellence: To deliver high-quality education in microbiology through a comprehensive curriculum that blends theoretical knowledge with hands-on laboratory experience, ensuring that students gain a strong foundation in microbiological principles and applications.
- 2. **Research and Innovation**: To foster a vibrant research culture that encourages students to explore and address critical issues in microbiology, including microbial pathogenesis, antibiotic resistance, environmental microbiology, and biotechnology.
- 3. **Critical Thinking and Problem Solving**: To cultivate analytical skills and critical thinking in students, empowering them to design experiments, interpret data, and solve complex biological problems.
- 4. **Career Preparation and Professional Development**: To prepare students for diverse career pathways in academia, healthcare, biotechnology, pharmaceuticals, environmental science, and government. Through career-oriented training, skill development, and industry exposure, we aim to equip graduates with the competencies needed to excel in professional roles and contribute to societal needs.
- 5. **Pathway to Higher Studies**: To support students aspiring to pursue advanced degrees and research opportunities by equipping them with the academic knowledge, research skills, and confidence required for competitive postgraduate programs globally.
- 6. Ethical and Social Responsibility: To instill a sense of ethical responsibility and social awareness in students, encouraging them to apply their expertise to address global health and environmental challenges. We promote integrity, respect for the environment, and commitment to ethical practices in all scientific endeavors.

Core Values

The PG Department of Microbiology upholds the following core values:

- Academic Excellence: Commitment to maintaining high standards of teaching, learning, and scholarly research.
- **Creativity and Innovation**: Encouraging creative thinking and innovative approaches to problem-solving and research.
- **Cultural Sensitivity**: Fostering an appreciation of cultural diversity and respect for different perspectives within science and society.
- Ethics and Integrity: Promoting honesty, transparency, and ethical responsibility in all academic and professional practices.
- Social Responsibility: Inspiring students to contribute positively to society and address contemporary issues through scientific enlightenment.

INTRODUCTION TO THE LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK (LOCF) FOR THE B.Sc MICROBIOLOGY PROGRAMME

The Learning Outcomes-Based Curriculum Framework (LOCF) for the BSc Microbiology Programme at EMEA College of Arts and Science, Kondotty, is developed in line with the University Grants Commission (UGC) guidelines and reflects the institution's commitment to an outcome-driven educational model. This framework places emphasis on a student-centered approach, where learning outcomes specify the competencies, skills, and values students are expected to acquire upon completing the program.

The LOCF for the BSc Microbiology Programme is designed to provide a thorough grounding in microbial sciences, encompassing diverse aspects of microbiology, including microbial physiology, genetics, immunology, and environmental microbiology. It seeks to foster analytical skills, critical thinking, and a hands-on approach to scientific investigation. By doing so, the framework prepares students to meet the academic and practical demands of today's scientific and professional fields, equipping them with skills that transcend the classroom. The LOCF employs Programme Outcomes (POs) and Course Outcomes (COs) mapped to each course to guide educational objectives, instructional methods, and evaluation strategies, ensuring a cohesive and relevant curriculum. Through a combination of theoretical knowledge and practical expertise, the LOCF aims to empower students to independently and ethically conduct experiments, analyze data, and apply microbiological knowledge in diverse fields such as healthcare, biotechnology, environmental management, and public health.

This curriculum framework encourages students to engage critically with scientific research, fostering a spirit of inquiry, lifelong learning, and social responsibility. Ultimately, the LOCF aims to develop well-rounded graduates prepared for various professional and academic pathways, enabling them to contribute meaningfully to society and address emerging challenges in microbiology and allied sciences.

GRADUATE ATTRIBUTES FOR THE B.Sc MICROBIOLOGY PROGRAMME

Graduates of the BSc Microbiology Programme at EMEA College of Arts and Science possess a strong foundation in scientific inquiry and critical thinking, enabling them to analyze and interpret complex biological data and draw informed conclusions. They demonstrate proficiency in laboratory techniques, ensuring precision, accuracy, and safety in experimental work, along with the ability to troubleshoot and adapt protocols as needed. With solid research skills, they are adept at evaluating scientific literature, synthesizing information, and conducting independent investigations in various fields of microbiology.

Their education promotes a commitment to ethical principles, emphasizing integrity, accountability, and respect for living organisms and the environment. A strong sense of social responsibility drives them to apply microbiological knowledge to address public health challenges and environmental issues, contributing to societal well-being. Teamwork skills enable them to collaborate effectively in scientific research and projects, valuing diverse perspectives and communicating ideas clearly within team settings.

In today's technology-driven world, these graduates are proficient with digital tools and software for data analysis, research, and presentation, allowing them to adapt quickly to

Learning Outcomes-Based Curriculum Framework (LOCF) - B.Sc Microbiology

evolving technological advancements. Self-management skills, including effective time management and goal-setting, equip them to handle complex tasks independently, maintaining a commitment to continuous learning and professional development.

Their global competency allows them to engage with international scientific research and advancements, adapting microbiological practices to diverse contexts. Overall, these attributes prepare graduates to excel in various scientific, healthcare, and environmental fields, enabling them to contribute meaningfully in both local and global settings. Together, these competencies foster adaptability, resilience, and a dedication to lifelong learning and societal impact.

GRADUATE ATTRIBUTES – DEPARTMENT OF MICROBIOLOGY

Graduates from the Department of Microbiology at EMEA College of Arts and Science, Kondotty, possess a distinct set of attributes that prepare them for academic, professional, and societal success. They gain a strong foundation in scientific thinking, allowing them to critically analyze biological data and apply knowledge to real-world challenges. Equipped with advanced laboratory and research skills, they are proficient in scientific investigation, data interpretation, and problem-solving in microbiology and related fields.

The key graduate attributes expected are:

- Scientific and Analytical Thinking: Ability to critically analyze and interpret complex biological data, fostering evidence-based insights into microbial sciences.
- Effective Communication: Skilled in articulating scientific information accurately and clearly, both orally and in writing, enhancing understanding and collaboration in scientific contexts.
- **Research Proficiency**: Competence in conducting independent research, designing experiments, collecting data, and synthesizing scientific findings for application and further study.
- Environmental and Public Health Awareness: Sensitivity to the environmental and health impacts of microbial processes, promoting responsible practices and solutions for societal benefit.

- Ethical Responsibility: Strong commitment to ethical practices, integrity, and social responsibility in scientific and professional settings.
- **Creativity and Innovation**: Encouragement of original thought and innovative approaches to solving microbiological challenges, fostering a proactive and inquisitive mindset.
- Collaborative Skills: Ability to work effectively within interdisciplinary teams, respecting diverse perspectives and contributing constructively toward shared scientific goals.
- **Digital Literacy**: Proficiency in using digital tools and software for data analysis, research, and presentation, ensuring adaptability to technological advancements in the sciences.
- Self-Directed Learning: Development of self-discipline, time management, and continuous learning, instilling values for lifelong professional growth.
- **Global Perspective**: Awareness of global scientific and environmental issues, promoting adaptability and understanding within an interconnected world.
- These attributes equip graduates with the skills and mindset necessary for impactful contributions in fields such as healthcare, environmental science, biotechnology, and research, both locally and globally.

PROGRAMME OUTCOME

PROGRAMM	IE – B.Sc MICROBIOLOGY
PO1	Acquire knowledge about the fundamental principles and scientific theories related
	to various scientific phenomena in day-to-day life.
PO2	To develop communication skills and get expertise in scientific writing.
PO3	Acquire the skills in handling scientific instruments, planning and performing in
	laboratory experiments. Equip them with the skills to think creatively and draw
	logical inferences from the scientific experiments to draw the objective conclusions
	or provide new solutions to the problems. To make them Capable of working
	effectively in diverse teams in both classroom, laboratory and in industry and field-
	based situations.
PO4	To get an awareness of the impact of science on the environment and society.

SI. No.	Academic Pathway	Major	Minor/ Other Disciplines	Foundation Courses AEC: 4 MDC: 3 SEC: 3 VAC: 3	Intern- ship	Total Credits	Example
		Each course has 4 credits		Each course has 3 credits			
1	Single Major	68	24	39	2	133	Major: Microbiology +
	(A)	(17 courses)	(6 courses)	(13 courses)			six courses in different disciplines in different combinations
2	Major (A) with Multiple Disciplines (B, C)	68	12 + 12	39	2	133	Major: Microbiology +
		(17 courses)	(3+3=6 courses)	(13 courses)			Biochemistry and Biostatistics/Compu ter application
3	Major (A) with Minor (B)	68	24	39	2	133	Major: Microbiology
		(17 courses)	(6 courses)	(13 courses)			Minor: Biochemistry
4	Major (A) with Vocational Minor (B)	68	24	39	2	133	Major: Microbiology
		(17 courses)	(6 courses)	(13 courses)			Minor: Biotechnology
5	Double Major (A, B)	A: 48 (12 courses)	-	12 + 18 + 9	2	133	Microbiology and Biochemistry double major
		B: 44	The 24 cre distributed be	dits in the etween the two	Minor s Majors.	tream are	

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS IN THE THREE-YEAR PROGRAMME IN CUFYUGP

(11 course	 2 MDC, 2 SEC, 2 VAC and the Internship should be in Major A. Total credits in Major A should be 48 + 20 = 68 (50% of 133) 1 MDC, 1 SEC and 1 VAC should be in Major B. Total credits in Major B should be 44 + 9 = 53 (40% of 133)
Exit with	UG Degree / Proceed to Fourth Year with 133 Credits

B.Sc. MICROBIOLOGY HONOURS PROGRAMME COURSE STRUCTURE FOR PATHWAYS 1 – 4

1. Single Major

3. Major with Minor

Major with Multiple Disciplines
 Major with Vocational Minor

Semest er	Course Code	Course Title	Total Hours	Hours/ Week	Credits	Marks		
						Interna l	External	Total
1	MBY1CJ 101/ MBY1MN100	Introduction to Microbiology	75	5	4	30	70	100
		Minor Course 1	75	5	4	30	70	100
		Minor Course 2	75	5	4	30	70	100
	ENG1FA 101(2)	AEC1– English	60	4	3	25	50	75
		AEC2 – Additional Language	45	3	3	25	50	75
		MDC1 – Other than Major	45	3	3	25	50	75
		Total		25	21	165	360	525
2	MBY2CJ 101/ MBY2MN100	Basic Techniques in Microbiology	75	5	4	30	70	100
		Minor Course 3	75	5	4	30	70	100
		Minor Course 4	75	5	4	30	70	100
	ENG2FA 103(2)	AEC3– English	60	4	3	25	50	75
		AEC4 – Additional Language	45	3	3	25	50	75
		MDC2 – Other than Major	45	3	3	25	50	75
		Total		25	21	165	360	525

1	1			1				r
3	MBY3CJ 201	Microbial Physiology	75	5	4	30	70	100
	MBY3CJ 202/ MBY3MN200	Microbial Metabolism	75	5	4	30	70	100
		Minor Course 5	75	5	4	30	70	100
		Minor Course 6	60/75	4	4	30	70	100
		MDC3 – Kerala Knowledge System	45	3	3	25	50	75
	ENG3FV 108(2)	VAC1 – English	45	3	3	25	50	75
		Total		25	22	170	380	550
4	MBY4CJ 203	Environmental and Sanitation Microbiology	75	5	4	30	70	100
	MBY4CJ 204	Soil and Agricultural Microbiology	75	5	4	30	70	100
	MBY4CJ 205	Molecular Biology	75	5	4	30	70	100
	ENG4FV 109(2)	VAC2 – English	45	3	3	25	50	75
		VAC3 – Additional Language	45	3	3	25	50	75
	ENG4FS 111(2)	SEC1 – English	60	4	3	25	50	75
		Total		25	21	165	360	525
5	MBY5CJ 301/ MBY8MN305	Systemic Bacteriology	75	5	4	30	70	100
	MBY5CJ 302	Industrial Microbiology	75	5	4	30	70	100
	MBY5CJ 303	Basic Aspects of Immunology	60	4	4	30	70	100
		ElectiveCourse 1 in Major	60	4	4	30	70	100
		ElectiveCourse 2 in Major	60	4	4	30	70	100
		SEC2 Entrepreneurial Microbiology	45	3	3	25	50	75
		Total		25	23	175	400	575
6	MBY6CJ 304/ MBY8MN304	Food and Dairy Microbiology	75	5	4	30	70	100

.

	MBY6CJ 305	Microbial Biotechnology	75	5	4	30	70	100
	MBY6CJ 306/ MBY8MN306	Principles of Genetics	60	4	4	30	70	100
		ElectiveCourse 3 in Major	60	4	4	30	70	100
		ElectiveCourse 4 in Major	60	4	4	30	70	100
	MBY6FS 113	SEC3 – Clinical Microbiology	45	3	3	25	50	75
	MBY6CJ 349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		25	25	225	400	625
	Total Credits for Three Years				133			3325
7	MBY7CJ 401	Biophysics and Instrumentation	75	5	4	30	70	100
	MBY7CJ 402	Advanced Immunology and Cancer Biology	75	5	4	30	70	100
	MBY7CJ 403	Microbial Biochemistry	75	5	4	30	70	100
	MBY7CJ 404	Mycology and Parasitology	75	5	4	30	70	100
	MBY7CJ 405	Antimicrobials and drug resistance	75	5	4	30	70	100
		Total		25	20	150	350	500
8	MBY8CJ 406/MBY8MN4 06	Biostatistics and Bioinformaitcs	75	5	4	30	70	100
	MBY8CJ 407/ MBY8MN407	Software Tools in Research	60	4	4	30	70	100
	MBY8CJ 408/ MBY8MN408	Pharmaceutical Microbiology	60	4	4	30	70	100
	OR (instead of 3	Major courses)						

.

Total C	ars		177			4425	
	Total		25	24	180	420	600
MBY8CJ 489	Research Methodology in Biological Science	60	4	4	30	70	100
OR (instead of F	Elective Course 7 in I	Major, in t	he case of	Honours	with Res	search Prog	ramme
	Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100
	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100
	Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100
MBY8CJ 499	Project (in Honours with Research programme)	360*	13*	12	90	210	300
MBY8CJ 449	Honours programme)	360*	13*	12	90	210	300

а.

* The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

CREDIT DISTRIBUTION FOR PATHWAYS 1 – 4

Single Major
 Major with Minor

.

Major with Multiple Disciplines
 Major with Vocational Minor

Semester	Major Courses	Minor Courses	General Foundation Courses	Internship/ Project	Total
1	4	4 + 4	3 + 3 + 3	-	21
2	4	4 + 4	3 + 3 + 3	-	21
3	4 + 4	4 + 4	3 + 3	-	22
4	4 + 4 + 4	-	3 + 3 + 3	-	21
5	4 + 4 + 4 + 4 + 4	-	3	-	23
6	4 + 4 + 4 + 4 + 4	-	3	2	25
Total for Three Years	68	24	39	2	133
7	4 + 4 + 4 + 4 + 4	-	-	_	20
8	4 + 4 + 4	4 + 4 + 4	-	12*	24
	*In	stead of thre	e Major course	S	
Total for Four Years	88 + 12 = 100	36	39	2	177

DISTRIBUTION OF MAJOR COURSES IN MICROBIOLOGY FOR PATHWAYS 1 – 4

1. Single Major

÷.

3. Major with Minor

Major with Multiple Disciplines
 Major with Vocational Minor

Semester	Course Code	Course Title	Total Hours	Hours/ Week	Credits
1	MBY1CJ 101/ MBY1MN100	Introduction to Microbiology	75	5	4
2	MBY2CJ 101/ MBY2MN100	Basic Techniques in Microbiology	75	5	4
3	MBY3CJ 201	Microbial Physiology	75	5	4
	MBY3CJ 202/ MBY3MN200	Microbial Metabolism	75	5	4
4	MBY4CJ 203	Environmental and Sanitation Microbiology	75	5	4
	MBY4CJ 204	Soil and Agricultural Microbiology	75	5	4
	MBY4CJ 205	Molecular Biology	75	5	4
5	MBY5CJ 301/8MN305	Systemic Bacteriology	75	5	4
	MBY5CJ 302	Industrial Microbiology	75	5	4
	MBY5CJ 303	Basic Aspects of Immunology	60	4	4
		Elective Course 1 in Major*	60	4	4
		Elective Course 2 in Major*	60	4	4
6	MBY6CJ 304/ MBY8MN304	Food and Dairy Microbiology	75	5	4
	MBY6CJ 305	Microbial Biotechnology	75	5	4
	MBY6CJ 306/ MBY8MN306	Principles of Genetics	60	4	4
		Elective Course 3 in Major*	60	4	4
		Elective Course 4 in Major*	60	4	4
	MBY6CJ 349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2
		Total	for Thr	ee Years	70
7	MBY7CJ 401	Biphysics and Instrumentation	75	5	4
	MBY7CJ 402	Advanced Immunology and Cancer Biology	75	5	4

	MBY7CJ 403	Microbial Biochemistry	75	5	4
	MBY7CJ 404	Mycology and Parasitology	75	5	4
	MBY7CJ 405	03Microbial Biochemistry04Mycology and Parasitology05Antimicrobials and drug resistanceMN406Biostatistics and Bioinformaitcs07/Software Tools in Research07Software Tools in Research08Pharmaceutical Microbiology08Pharmaceutical Microbiology09Project (in Honours programme)09Project (in Honours programme)09Elective Course 5 in Major / Minor Course 7**09Elective Course 6 in Major / Minor Course 8**09Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline**1 of Elective course 7 in Major, in Honours09Research Methodology in		5	4
8	MBY8CJ 406/MBY8MN406	Biostatistics and Bioinformaitcs	75	5	4
	MBY8CJ 407/ MBY8MN407	Software Tools in Research	60	4	4
	MBY8CJ 408/ MBY8MN408	Pharmaceutical Microbiology	60	4	4
	OR (instead of MBY8)	Core Courses MBY8CJ 406/MBY8 MN407 and MBY8CJ 408/ MBY8M	MN406, 1 N408 in 1	MBY8CJ Major)	407/
	MBY8CJ 449 Project (in Honours programme)				12
	MBY8CJ 499	MBY8CJ 499 Project (in Honours with Research programme)		13	12
		1N407 and MBY8CJ 408/ MBY81 Project (in Honours programme) Project (in Honours with Research programme) Elective Course 5 in Major / Mino Course 7** Elective Course 6 in Major / Mino	60	4	4
		Elective Course 6 in Major / Minor Course 8**	60	4	4
		Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline**	60	4	4
	OR (instead of Ele	ctive course 7 in Major, in Honours	with Rese	earch prog	gramme)
	MBY8CJ 489	Research Methodology in Biological Science	60	4	4
		Total for Four Years			114

e

*Choose any two elective courses each form the course basket of seven elective courses in semester 5 and nine elective courses in semester 6, as listed below in the two table of elective courses with specialization and elective courses with no specialization.

** Chose any three elective courses from the course basket of seven elecive courses in semester 8, as listed below in the able of elective courses with no specialization.

ELECTIVE COURSES IN MICROBIOLOGY WITH SPECIALISATION

÷

Group	Sl.	Course	Title	Semest	Total	Hrs/	Credi		Marks	
No.	No.	Code		er	Hrs	Week	ts	Intern	Exter	Total
1				NA Took	nology			ai	IIAI	
1	1	MDMCEL			inology	4	4	20	70	100
	l	MBY5EJ 301(1)	Introduction to rDNA technology	5	60	4	4	30	/0	100
	2	MBY5EJ 302(1)	Tools and Techniques in rDNA technology	5	60	4	4	30	70	100
	3	MBY6EJ 301(1)	Applications of rDNA Technology I	6	60	4	4	30	70	100
	4	MBY6EJ 302(1)	Applications of rDNA Technology II	6	60	4	4	30	70	100
2			Clin	ical Micı	robiolog	y				
	1	MBY5EJ 303(2)	Basic Human Physiology	5	60	4	4	30	70	100
	2	MBY5EJ 304(2)	Techniques in clinical laboratory	5	60	4	4	30	70	100
	3	MBY6EJ 303(2)	Diagnostic Microbiology	6	60	4	4	30	70	100
	4	MBY6EJ 304(2)	Advanced Diagnostic Techniques in Microbiology	6	60	4	4	30	70	100
3			Food and W	ater Mi	crobiolo	gy				
	1	MBY5EJ 305(3)	Microbes in food and water	5	60	4	4	30	70	100
	2	MBY5EJ 306(3)	Food quality assurance	5	60	4	4	30	70	100
	3	MBY6EJ 305(3)	Laboratory techniques for Food and water analysis	6	60	4	4	30	70	100
	4	MBY6EJ 306(3)	Food and water borne diseases	6	60	4	4	30	70	100

SI.	Course Code	Title	Semest	Total	Hrs/	Credi		Marks	
No.			er	Hrs	Week	ts	Intern	Exter	Total
							al	nal	
1	MBY5EJ 307	Enzymology	5	60	4	4	30	70	100
2	MBY6EJ 307	Microbial Taxonomy	6	60	4	4	30	70	100
3	MBY6EJ 308	Biosafety and Bioethics	6	60	4	4	30	70	100
4	MBY6EJ 309	Virology and emerging microbial diseases	6	60	4	4	30	70	
5	MBY8EJ 401	Cell Biology	8	60	4	4	30	70	100
6	MBY8EJ 402	Cell and Tissue Culture	8	60	4	4	30	70	100
7	MBY8EJ 403	Plant pathology	8	60	4	4	30	70	100
8	MBY8EJ 404	Microbes in extreme environment	8	60	4	4	30	70	100
9	MBY8EJ 405	Virology and emerging microbial diseases	8	60	4	4	30	70	100
10	MBY8EJ 406	Plant derived antimicrobials	8	60	4	4	30	70	100
11	MBY8EJ 407	Developmental biology	8	60	4	4	30	70	100

ELECTIVE COURSES IN MICROBIOLOGY WITH NO SPECIALISATION

•

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN MICROBIOLOGY

Samas	Course		Total	Hours/			Marks	
ter	Code	Course Title	Hours	Week	Credits	Intern al	Externa l	Total
1	MBY1FM 105	MDC 1 – Microorganisms in Daily life	45	3	3	25	50	75
2	MBY2FM 106	MDC 2 – Applied Microbiology	45	3	3	25	50	75
3	MBY3FV 108	VAC 1 – Microbial Solid Waste Management	45	3	3	25	50	75
4	MBY4FV 110	VAC 2 – Fermented Foods	45	3	3	25	50	75
5	MBY5FS 112	SEC 2 – Entrepreneurial Microbiology	45	3	3	25	50	75
6	MBY6FS 113	SEC 3 – Clinical Microbiology	45	3	3	25	50	75

GROUPING OF MINOR COURSES IN MICROBIOLOGY (Title of the Minor: MICROBIOLOGY)

The courses given below should not be offered as minor courses to students who have taken microbiology as the major discipline. They should be offered to students from other major disciplines only.

Group	Sl.	Course Code	Title	Seme	Total	Hrs/	Cre		Marks	5
NO.	NO.			ster	Hrs	week	aits	Inte rnal	Exte rnal	Total
Ι			GENERA	L MIC	ROBIOI	LOGY	I	1	1	
	1	MBY1MN 100	Introduction to Microbiology	1	75	5	4	30	70	100
	2	MBY2MN 100	Basic Techniques in Microbiology	2	75	5	4	30	70	100
	3	MBY3MN 200	Microbial metabolism	3	75	5	4	30	70	100
					•				•	
II			APPLIE	D MICF	ROBIOL	.OGY				
	1	MBY1MN 101	Microbial growth	1	75	5	4	30	70	100
	2	MBY2MN 101	Bacterial infections and Host defense systems	2	75	5	4	30	70	100
	3	MBY3MN 201	Applied Microbiology	3	75	5	4	30	70	100

- (i). Students in Single Major pathway can choose course/courses from any of the Minor/ Vocational Minor groups offered by a discipline other than their Major discipline.
- (ii).Students in Major with Multiple Disciplines pathway can choose as one of the multiple disciplines, all the three courses from any one of the Minor/ Vocational Minor groups offered by any discipline, including their Major discipline. If they choose one of the Minor/ Vocational Minor groups offered by their Major discipline as the first one of the multiple disciplines, then their choice as the second one of the multiple disciplines should be any one of the Minor/ Vocational Minor groups offered by a discipline other

than the Major discipline. If the students choose any one of the Minor/ Vocational Minor groups in Microbiology as given above, then the title of the group will be the title of that multiple discipline.

(iii). Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by any discipline. If the students choose any two Minor groups in Microbiology as given above, then the title of the Minor will be Microbiology.

COURSE STRUCTUREFOR BATCH A1(B2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Microbiology (Major A)B1: 68 credits in Major BA2: 53 credits in Microbiology (Major A)B2: 53 credits in Major BThe combinations available to the students: (A1 & B2), (B1 & A2)Note: Unless the batch is specified, the course is for all the students of the class

Somo	Total Hours/			Marks				
ster	Course Code	Course Title	Hours	Total Hours/ Hours Hours/ Week Credits Inter Extenal al 75 5 4 30 70 $60/75$ $4/5$ 4 30 70 $60/75$ $4/5$ 4 30 70 75 5 4 30 70 75 5 4 30 70 75 5 4 30 70 60 4 3 25 50 45 3 3 25 50 45 3 3 25 50 45 3 3 25 50 45 3 3 25 50 75 5 4 30 70	Extern al	Total		
	MBY1CJ 101 / MBY1MN 100	Core Course 1 in Major Microbiology – Introduction to Microbiology	75	5	4	30	70	100
	BBB1CJ 101	Core Course 1 in Major B –	60/75	4/5	4	30	70	100
	MBY1CJ 102 / MBY2CJ 102 / MBY4CJ 205*	Core Course 2 in Major Microbiology – Molecular Biology (for batch A1 only)	75	5	4	30	70	100
1	ENG1FA 101(2)	Ability Enhancement Course 1 – English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
	MBY1FM 105	MDC 1 in Microbiology – Microorganisms in Daily life (for batch A1 only)	45	3	3	25	50	75
		Total		24/25	21			525
	MBY2CJ 101 / MBY2MN100	Core Course 3 in Major Microbiology – Basic Techniques in Microbiology	75	5	4	30	70	100
2	BBB2CJ 101	Core Course 2 in Major B –	60/75	4/5	4	30	70	100
2	BBB2CJ 102 / BBB1CJ 102	Core Course 3 in Major B – (for batch B2 only)	60/75	4/5	4	30	70	100
	ENG2FA 103(2)	Ability Enhancement Course 3 – English	60	4	3	25	50	75

		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
	MBY2FM 106 / MBY3FM 106	MDC 2 in Microbiology – Applied Microbiology	45	3	3	25	50	75
		Total		23/25	21			525
	MBY3CJ 201	Core Course 4 in Major Microbiology – Microbial Physiology	75	5	4	30	70	100
	MBY3CJ 202 / MBY3MN 200	Core Course 5 in Major Microbiology – Microbial Metabolism	75	5	4	30	70	100
	BBB3CJ 201	Core Course 4 in Major B	60/75	4/5	4	30	70	100
3	BBB3CJ 202	Core Course 5 in Major B	60/75	4/5	4	30	70	100
	BBB3FM 106 / BBB2FM 106	MDC 1 in B –	45	3	3	25	50	75
	MBY3FV 108	VAC 1 in Microbiology – Microbial Solid Waste Management (for batch A1 only)	45	3	3	25	50	75
		Total		23 / 25	22			550
	MBY4CJ 203	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology	75	5	4	30	70	100
	MBY4CJ 203	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology Core Course 6 in Major B	75 60/ 75	5 4/ 5	4	30 30	70	100
4	MBY4CJ 203 MBY4CJ 204	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology Core Course 6 in Major B Core Course 7 in Major Microbiology – Soil and Agricultural Microbiology (for batch A1 only)	75 60/ 75 75	5 4/5 5	4 4 4	30 30 30	70 70 70	100 100 100
4	MBY4CJ 203 MBY4CJ 204 MBY4FV 110	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology Core Course 6 in Major B Core Course 7 in Major Microbiology – Soil and Agricultural Microbiology (for batch A1 only) VAC 2 in Microbiology – Fermented Foods	75 60/75 75 45	5 4/5 5 3	4 4 4 3	30 30 30 25	70 70 70 50	100 100 100 75
4	MBY4CJ 203 MBY4CJ 204 MBY4FV 110 BBB4FV 110	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology Core Course 6 in Major B Core Course 7 in Major Microbiology – Soil and Agricultural Microbiology (for batch A1 only) VAC 2 in Microbiology – Fermented Foods VAC 1 in B –	75 60/75 75 45 45	5 4/5 5 3 3	4 4 4 3 3	30 30 30 25 25	70 70 70 50 50	100 100 100 75 75
4	MBY4CJ 203 MBY4CJ 204 MBY4FV 110 BBB4FV 110 MBY4FS 112 / MBY5FS 112	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology Core Course 6 in Major B Core Course 7 in Major Microbiology – Soil and Agricultural Microbiology (for batch A1 only) VAC 2 in Microbiology – Fermented Foods VAC 1 in B – SEC 1 in Microbiology – Entrepreneurial Microbiology	75 60/75 75 45 45 45	5 4/5 5 3 3 3	4 4 4 3 3 3	30 30 30 25 25 25	70 70 70 50 50 50	100 100 100 75 75 75 75
4	MBY4CJ 203 MBY4CJ 204 MBY4FV 110 BBB4FV 110 MBY4FS 112 / MBY5FS 112	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology Core Course 6 in Major B Core Course 7 in Major Microbiology – Soil and Agricultural Microbiology (for batch A1 only) VAC 2 in Microbiology – Fermented Foods VAC 1 in B – SEC 1 in Microbiology – Entrepreneurial Microbiology Total	75 60/75 75 45 45 45	5 4/5 5 3 3 3 23/24	4 4 4 3 3 3 21	30 30 30 25 25 25	70 70 70 50 50 50	100 100 100 75 75 75 75 525
4	MBY4CJ 203 MBY4CJ 204 MBY4FV 110 BBB4FV 110 MBY4FS 112 / MBY5FS 112 MBY5CJ 303	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology Core Course 6 in Major B Core Course 7 in Major Microbiology – Soil and Agricultural Microbiology (for batch A1 only) VAC 2 in Microbiology – Fermented Foods VAC 1 in B – SEC 1 in Microbiology – Entrepreneurial Microbiology Total Core Course 8 in Major Microbiology – Basic Aspects of Immunology	75 60/75 75 45 45 45 60	5 4/5 5 3 3 3 23/24 4	4 4 4 3 3 3 21 4	30 30 30 25 25 25 30	70 70 70 50 50 50 70	100 100 100 75 75 75 525 100

•

						-		
	MBY5CJ 302	Core Course 9 in Major Microbiology – Industrial Microbiology (for batch A1 only)	75	5	4	30	70	100
		Elective Course 1 in Major Microbiology**	60	4	4	30	70	100
		ElectiveCourse 1 in Major B	60	4	4	30	70	100
	BBB5FS 112 / BBB4FS 112	SEC 1 in B	45	3	3	25	50	75
		Total		24/25	23			575
	MBY5CJ 301*/ MBY8MN 305	Core Course 10 in Major Microbiology Systemic Bacteriology	75	5	4	30	70	100
		Core Course 8 in Major B –	60/ 75	4/ 5	4	30	70	100
	BBB6CJ 305	Core Course 9 in Major B – (for batch B2 only)	60	4	4	30	70	100
6		ElectiveCourse 2 in Major Microbiology**	60	4	4	30	70	100
6		Elective Course 2 in Major B	60	4	4	30	70	100
	MBY6FS 113	Skill Enhancement Course 2 in Microbiology – Clinical Microbiology (for batch A1 only)	45	3	3	25	50	75
	MBY6CJ 349	Internship in Major Microbiology (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		24/25	25			625
	То	tal Credits for Three Years		133			3325	
					-			

For batch A1(B2), the course structure in semesters 7 and 8 is the same as for pathways 1 - 4, except that the number of the core and elective courses is in continuation of the number of courses in the two categories completed at the end of semester 6.

* The course code of the same course as used for the pathways 1-4

**Choose any one elective courses each in Major Microbiology form the course basket of seven elective courses in Microbiology in semester 5 and nine elective courses in Microbiology in semester 6, as listed in the two table of elective courses with specialization

and elective courses with no specialization. Chose any one elective course each in Major B from the course basket of elective courses in Major B in semester 5 and semester 6. ** Chose any three elective courses from the course basket of seven elecive courses in semester

8, as listed below in the able of elctive courses with no specialization.

	IN PATHWAY 5: DOUBLE MAJOR									
	Major	General		Major	General	AEC				
Samastan	Courses in	Foundation	Internship/	Courses in B	Foundation					
Semester	Microbiolog	Courses in	Project in		Courses in B		Total			
	У	Microbiology	Microbiology							
1	4 + 4	3	-	4	-	3 + 3	21			
2	4	3	-	4 + 4	-	3 + 3	21			
3	4 + 4	3	-	4 + 4	3	-	22			
4	4 + 4	3 + 3	-	4	3	-	21			
5	4 + 4 + 4	-	-	4 + 4	3	-	23			
6	4 + 4	3	2	4 + 4 + 4	_	-	25			
Total for	48	18	2	44	9	12	133			
Three		68		-	3	12	133			
Years		00			5	12	155			
	Major	Minor Courses								
	Courses in									
	Microbiolog									
	У									
7	4 + 4 + 4 + 4	-			-	-	20			
/	+ 4						20			
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24			
		*In	stead of three I	Major courses						
Total for	88 + 12 =	10					1 7 7			

CREDIT DISTRIBUTION FOR BATCH A1(B2) IN PATHWAY 5: DOUBLE MAJOR

COURSE STRUCTUREFOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Microbiology (Major A)B1: 68 credits in Major BA2: 53 credits in Microbiology (Major A)B2: 53 credits in Major B

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

Seme			Total	Hours/			Mark	S
ster	Course Code	Course Title	Hours	Week	Credits 4 4 3 3 3 3 21 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Inter nal	Exter nal	Total
	MBY1CJ 101 / MBY1MN 100	Core Course 1 in Major Microbiology – Introduction to Microbiology	75	5	4	30	70	100
	BBB1CJ 101	Core Course 1 in Major B –	60/75	4/5	4	30	70	100
1	BBB1CJ 102 / BBB2CJ 102	Core Course 2 in Major B – (for batch B1 only)	60/ 75	4/ 5	4	30	70	100
	ENG1FA 101(2)	Ability Enhancement Course 1 – English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
	BBB1FM 105	MDC 1 in B – (for batch B1 only)	45	3	3	25	50	75
		Total		23 – 25	21			525
	MBY2CJ 101 / MBY2MN100	Core Course 2 in Major Microbiology– Basic Techniques in Microbiology	75	5	4	30	70	100
	BBB2CJ 101	Core Course 3 in Major B –	60/75	4/5	4	30	70	100
2	MBY2CJ 102 / MBY1CJ 102 / MBY4CJ 205*	Core Course 3 in Major Microbiology – Molecular Biology (for batch A2 only)	75	5	4	30	70	100
	ENG2FA 103(2)	Ability Enhancement Course 3 – English	60	4	3	25	50	75
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75

	MBY2FM 105 / MBY3FM 105	MDC 1 in Microbiology – Microorganisms in Daily Life	45	3	3	25	50	75
		Total		24/ 25	21			525
	MBY3CJ 201	Core Course 4 in Major Microbiology – Microbial Physiology	75	5	4	30	70	100
	MBY3CJ 202 / MBY3MN 200	Core Course 5 in Major Microbiology – Microbial Metabolism	75	5	4	30	70	100
3	BBB3CJ 201	Core Course 4 in Major B	60/75	4/5	4	30	70	100
5	BBB3CJ 202	Core Course 5 in Major B	60/75	4/5	4	30	70	100
	BBB3FM 106 / BBB2FM 106	MDC 2 in B –	45	3	3	25	50	75
	BBB3FV 108	VAC 1 in B – (for batch B1 only)	45	3	3	25	50	75
		Total		23/ 25	22			550
	MBY4CJ 203	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology	75	5	4	30	70	100
		Core Course 6 in Major B	60/75	4/5	4	30	70	100
1		Core Course 7 in Major B – (for batch B1 only)	60/ 75	4/5	4	30	70	100
	MBY4FV 110	VAC 1 in Microbiology – Fermented Foods	45	3	3	25	50	75
	BBB4FV 110	VAC 2 in B –	45	3	3	25	50	75
	MBY4FS 112 / MBY5FS 112	SEC 1 in Microbiology – Entrepreneurial Microbiology	45	3	3	25	50	75
		Total		22/24	21			525
	MBY5CJ 303	Core Course 7 in Major Microbiology – Basic Aspects of Immunology	60	4	4	30	70	100
5		Core Course 8 in Major B	60/75	4/5	4	30	70	100
		Core Course 9 in Major B – (for batch B1 only)	60	4	4	30	70	100

•

		Elective Course 1 in Major Microbiology**	60	4	4	30	70	100
		Elective Course 1 in Major B	60	4	4	30	70	100
	BBB5FS 112 / BBB4FS 112	SEC 1 in B	45	3	3	25	50	75
		Total		23/24	23			575
	MBY5CJ 301*/ MBY8MN 305	Core Course 8 in Major Microbiology – Systemic Bacteriology	75	5	4	30	70	100
		Core Course 10 in Major B –	60/ 75	4/ 5	4	30	70	100
	MBY6CJ 306/ MBY8MN306	Core Course 9 in Major Microbiology – Principles of Genetics (for batch A2 only)	60	4	4	30	70	100
6		ElectiveCourse 2 in Major Microbiology**	60	4	4	30	70	100
		Elective Course 2 in Major B	60	4	4	30	70	100
	BBB6FS 113	SEC 2 in B – (for batch B1 only)	45	3	3	25	50	75
	BBB6CJ 349	Internship in Major B (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		24/25	25			625
	Tota	l Credits for Three Years			133			3325

To continue to study Microbiology in semesters 7 and 8, batch B1(A2) needs to earn additional 15 credits in Microbiology to make the total credits of 68. Suppose this condition is achieved, and the student of batch B1(A2) proceeds to the next semesters to study Microbiology. The course structure in semesters 7 and 8 is the same as for pathways 1 - 4, except that the number of the core and elective courses is in continuation of the number of courses in the two categories completed at the end of semester 6, taking into account the number of courses in Microbiology taken online to earn the additional 15 credits.

* The course code of the same course as used for the pathways 1-4

**Choose any one elective courses each in Major Microbiology form the course basket of seven elective courses in Microbiology in semester 5 and nine elective courses in

Microbiology in semester 6, as listed in the two table of elective courses with specialization and elective courses with no specialization. Chose any one elective course each in Major B from the course basket of elective courses in Major B in semester 5 and semester 6. ** Chose any three elective courses from the course basket of seven elecive courses in semester

8, as listed below in the able of elctive courses with no specialization.

		IN PATE	1WAY 5: D	OURLE MA	AJOK		
Semester	Major Courses in B	General Foundation Courses in B	Internship/ Project in B	Major Courses in Microbiology	General Foundation Courses in Microbiology	AEC	Total
1	4 + 4	3	-	4	-	3 + 3	21
2	4	-	-	4 + 4	3	3 + 3	21
3	4 + 4	3 + 3	-	4 + 4	-	-	22
4	4 + 4	3	-	4	3 + 3	-	21
5	4 + 4 + 4	3	-	4 + 4	-	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total for	48	18	2	44	9	12	133
Three Years		68		5	53	12	133
	Major Courses in B	Minor Courses					
7	4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
		*In	stead of three I	Major courses			
Total for Four	88 + 12 =	12					177

CREDIT DISTRIBUTION FOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

EVALUATION SCHEME

- 1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks is from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks is from internal evaluation and 50 marks, from external evaluation.
- 2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit practical.
 - In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.
 - In 4-credit courses with 3-credit theory and 1-credit practical components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for practical. The practical component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.
- **3.** All the 3-credit courses (General Foundational Courses) in Microbiology are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

S1.	Nature	e of the Course	Internal	Evaluation in	External	Total
No.			Marks (ab	out 30% of the	Exam	Marks
			total)		on 4 modules	
			Open-	On the other 4	(Marks)	
			ended	modules		
			module /			
			Practical			
1	4-credit	only theory	10	20	70	100
	course	(5 modules)				
2	4-credit	Theory	20	10	70	100
	course	(4 modules) +				
	Practical					
3	3-credit	3-credit only theory		20	50	75
	course	(5 modules)				

1. MAJOR AND MINOR COURSES

Sl. No.	Components of Internal Evaluation of Theory Part	Internal Marks for the Theory Part of a Major / Minor Course of 4-credits				
	of a Major / Minor Course	Theory Only		Theory + Practical		
		4 Theory	Open-ended	4 Theory	Practical	
		Modules	Module	Modules		
1	Test paper/	10	4	5	-	
	Mid-semester Exam					
2	Seminar/ Viva/ Quiz	6	4	3	-	
3	Assignment	4	2	2	-	
	E 1	20	10	10	20^*	
Total		30		30		

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

*Refer the table in section 1.2 for the evaluation of practical component

1.2. EVALUATION OF PRACTICAL COMPONENT

The evaluation of practical component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of practical by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester practical examination and viva-voce, and the evaluation of practical records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of practical courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of practical component shall be as given below:

Sl. No.	Evaluation of Practical Component	Marks for	Weightage
	of Credit-1 in a Major / Minor Course	Practical	
1	Continuous evaluation of practical/ exercise performed in practical classes by the students	10	50%
2	End-semester examination and viva-voce to be conducted by teacher-in-charge along with an additional examiner arranged internally by the Department Council	7	35%
3	Evaluation of the Practical records submitted for the end semester viva–voce examination by the teacher-in- charge and additional examiner	3	15%
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

Duration	Tuno	Total No. of	No. of Questions	Marks for	Ceiling		
Duration	Туре	Questions	to be Answered	Each Question	of Marks		
	Short Answer	10	8-10	3	24		
2 Hours	Paragraph/ Problem	8	6-8	6	36		
	Essay	2	1	10	10		
				Total Marks	70		

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in a firm, industry or organization, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.
- A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship.

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Microbiology or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In BSc. Microbiology Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- 7. The institution at which the Internship will be carried out should be prior-approved by the Department Councilof the college where the student has enrolled for the UG Honours programme.

2.2. EVALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evaluation of Internship	Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of Acquisition of skill set internship through interim	10	40%
2	presentations and reports by Interim Presentation and the committee internally Viva-voce	5	
3	constituted by the Punctuality and Log Book Department Council	5	
4	Report of Institute Visit/ Study Tour	5	10%
5	End-semester viva-voceQuality of the work examination to be conducted	6	35%
6	by the committee internally Presentation of the work	5	
7	Department Council Viva-voce	6	
8	Evaluation of the day-to-day records, the report of internship supervisor, and final report submitted for the end semester viva–voce examination before the committee internally constituted by the Department Council	8	15%
	Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution/ any other higher educational institution (HEI)/ research centre/ training centre.
- The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ST/OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates asper the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-creditsinstead of three Core Courses in Major in semester 8.
- The approved research centres of University of Calicut or any other university/ HEI can offer the Honours with Research programme. The departments in the affiliated colleges under University of Calicut, which are not the approved research centres of the University, should get prior approval from the University to offer the Honours with Research programme. Such departments should have minimum two faculty members with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the University/ College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.
- The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.
- If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Microbiology or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of experimental/ theoretical/ computational in nature.
- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8)from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - ➢ Wide review of a topic.
 - > Investigation on a problem in systematic way using appropriate techniques.
 - Systematic recording of the work.
 - > Reporting the results with interpretation in a standard documented form.
 - > Presenting the results before the examiners.

- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
- 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
- 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
- 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
- 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks is from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the University.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

8		
Components of Evaluation of Project	Marks for the Project (Honours/	Weightage
	Honours with Research)	
Continuous evaluation of project work through interim	90	30%
presentations and reports by the committee internally		
constituted by the Department Council		
End-semester viva-voce examination to be conducted	150	50%
by the external examiner appointed by the university		
Evaluation of the day-to-day records and project report	60	20%
submitted for the end-semester viva-voce examination		
conducted by the external examiner		
Total Marks	300	

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva-Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

INTERNAL EVALUATION OF PROJECT

EXTER	NAL EVALUATIO	N OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research) 12 credits
1	Content and relevance of the Project,	
	Methodology, Quality of analysis, and	50
	Innovations of Research	
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
	Total Marks	210

4. GENERAL FOUNDATION COURSES

• All the General Foundation Courses (3-credits) in Microbiology are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General Foundation Course in Microbiology	Internal Marks of a General Foundation Course of 3-credits in Microbiology		
	Microbiology	4 Theory Modules	Open-ended Module	
1	Test paper/ Mid-semester Exam	10	2	
2	Seminar/ Viva/ Quiz	6	2	
3	Assignment	4	1	
		20	5	
Total		25		

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

Duration	Tuno	Total No. of	No. of Questions	Marks for	Ceiling		
Duration	Type	Questions	to be Answered	Each Question	of Marks		
	Short Answer	10	8-10	2	16		
1.5 Hours	Paragraph/ Problem	5	4-5	6	24		
	Essay	2	1	10	10		
				Total Marks	50		

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

5.LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

S1.	Percentage of Marks	Description	Letter	Grade	Range of	Class
No.	(Internal & External		Grade	Point	Grade	
	Put Together)				Points	
1	95% and above	Outstanding	0	10	9.50 - 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 - 9.49	with
3	75% to below 85%	Very Good	Α	8	7.50 - 8.49	Distinction
4	65% to below 75%	Good	B+	7	6.50 - 7.49	
5	55% to below 65%	Above	В	6	5.50 - 6.49	First Class
		Average				
6	45% to below 55%	Average	С	5	4.50 - 5.49	Second Class
7	35% to below 45% aggregate	Pass	Р	4	3.50 - 4.49	Third Class
	(internal and external put					
	together) with a minimum of					
	30% in external valuation					
8	Below an aggregate of 35%	Fail	F	0	0 - 3.49	Fail
	or below 30% in external					
	evaluation					
9	Not attending the examination	Absent	Ab	0	0	Fail

LETTER GRADES AND GRADE POINTS

• When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
.

• The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) = Σi (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ithcourse in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

SCDA -	Sum of the credit points of all the courses in a semester
501 A -	Total credits in that semester

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
Ι	Course 1	3	Α	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	$3 \ge 6 = 18$
Ι	Course 4	3	0	10	$3 \ge 10 = 30$
Ι	Course 5	3	С	5	3 x 5 = 15
Ι	Course 6	4	В	6	$4 \ge 6 = 24$
	Total	20			139
	SGPA			139/20 = 6.950	

ILLUSTRATION – COMPUTATION OF SGPA

• The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students. CGPA for the three-year programme in CUFYUGP shall be calculated by the following formula.

$$CGPA = \frac{Sum \ of \ the \ credit \ points \ of \ all \ the \ courses \ in \ six \ semesters}{Total \ credits \ in \ six \ semesters \ (133)}$$

CGPA for the four-year programme in CUFYUGP shall be calculated by the following formula.

 $CGPA = \frac{Sum of the credit points of all the courses in eight semesters}{Total credits in eight semesters (177)}$

• The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.

÷

• Based on the above letter grades, grade points, SGPA and CGPA, the University shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

MAJOR COURSES

÷.

No	Course	Sem	Code	Title
1	Major	Ι	MBY1CJ 101	Introduction to Microbiology
2	Major	II	MBY2CJ 101	Basic Techniques in Microbiology
3	Major	III	MBY3CJ 201	Microbial Physiology
4	Major	III	MBY3CJ 202	Microbial Metabolism
5	Major	IV	MBY4CJ 203	Environmental and Sanitation Microbiology
6	Major	IV	MBY4CJ 204	Soil and Agricultural Microbiology
7	Major	IV	MBY4CJ 205	Molecular biology
8	Major	V	MBY5CJ 301	Systemic Bacteriology
9	Major	V	MBY5CJ 302	Industrial Microbiology
10	Major	V	MBY5CJ 303	Basic aspects of Immunology
11	Major	VI	MBY6CJ 304	Food and Dairy Microbiology
12	Major	VI	MBY6CJ 305	Microbial Biotechnology
13	Major	VI	MBY6CJ 306	Principles of Genetics
14	Major	VII	MBY7CJ 401	Biophysics and instrumentation
15	Major	VII	MBY7CJ 402	Advanced Immunology and Cancer biology
16	Major	VII	MBY7CJ 403	Microbial Biochemistry
17	Major	VII	MBY7CJ 404	Mycology and Parasitology
18	Major	VII	MBY7CJ 405	Antimicrobials and Drug resistance
19	Major	VIII	MBY8CJ 406	Biostatistics and Bioinformatics
20	Major	VIII	MBY8CJ 407	Software tools in Research
21	Major	VIII	MBY8CJ 408	Pharmaceutical Microbiology
22	Major	VIII	MBY8CJ 489	Research Methodology in biological sciences

MBY1CJ 101/ MBY1MN100. INTRODUCTION TO MICROBIOLOGY

÷.

Progr	amme	B. Sc. Microbiology								
Cours	se Code	MBY1CJ 101/MBY1	MN100							
Cours	se Title	Introduction to Microbiology								
Туре	of Course	Major/Minor								
Seme	ester	Ι								
Acad	emic Level	100 - 199								
Cours	se Details	Credit	Lectur	re	Tutorial	Practical	Total			
			per we	ek	per week	per week	Hours			
		4	3		-	2	75			
Pre-re	equisites	Nil								
Cours	se	This introductory cou	rse cover	rs the	e fundamen	tal aspects of m	icrobiology,			
Sumr	nary	exploring microbial	diversity	, stı	ructure, fur	nction, and its	impacts on			
		human and environm	nental he	alth	. It provide	s students with	n theoretical			
		knowledge and prac	ctical sk	cills	fundament	tal for further	studies in			
		microbiology and rela	ated field	ls.						
Cours	e Outcomes	s (CO):					1			
CO		CO Statement		C	Cognitive	Knowledge	Evaluation			
					Level*	Category#	Tools used			
	Understan	d the diversity morn	hology				Internal Exam			
COL	and reproc	duction of bacteria fungi and			IJ	C	Assignment,			
001	viruses	autorion of currenta, rangi, and		U		C	End Semester			
	vii uses.						Examination			
	Explain th	e historical developm	ent and				Internal Exam			
CO2	scope of	microbiology, includ	ing the	U		С	Assignment,			
002	contributio	tions of key scientists.		U		C	End Semester			
	Contributio	sis of key selentists.					Examination			
	Differentia	te the fundamental st	ructures				Internal Exam			
CO3	of prokary	otic and eukarvotic ce	ells and	An		С	Assignment,			
005	describe th	e maior differences	ins, and	1 111	L	C	End Semester			
	deserree di	le major anterences.					Examination			
	Describe	the roles of benefic	ial and				Internal Exam			
CO4	harmful	microorganisms in	various	U		C	Assignment,			
	environme	nts	various	U		C	End Semester			
	chivitolinite	1113.					Examination			
	Demonstra	te basic microbi	ological							
COS	laboratory	techniques, in	ncluding	An		р	Practical			
005	microscop	y, staining, and	culture	¹ P	,	1	Assessment			
	methods.									
* - Re	emember (R), Understand (U), App	oly (Ap),	Ana	lyse (An), I	Evaluate (E), C	reate (C)			
# - Fa	ctual Know	ledge(F) Conceptual K	nowledg	ge (C) Procedura	ll Knowledge (1	P) Metacognitive			
Know	vledge (M)									

Detaile	d Sylla	bus:		-
Modul e	Unit	Content	Hrs (45 +30)	Mark s (70)
Ι	The N	Microbial World	10	15
	1	Bacterial forms and arrangement of cells.		
	2	Morphology of molds and yeasts		
	3	Sexual and asexual reproduction in fungi.		
	4	Viral morphology and replication processes.		
	5	Structure, lytic cycle, and lysogeny of bacteriophages.		
II	Histo	ry of Microbiology	10	15
	6	Overview of microbiology's scope and its historical		
		development.		
	7	Debate of Spontaneous generation vs. Biogenesis.		
	8	Contributions of Anton van Leeuwenhoek, Joseph Lister,		
		Paul Ehrlich, and other pioneers.		
	9			
III	Fund	amental Structure of Cell	15	25
	10	General structure of prokaryotic and eukaryotic cells and		
		their differences.		
	11	Structures of archaebacteria and eubacteria.		
	12	Detailed analysis of bacterial ultrastructure (e.g.,		
		glycocalyx, capsule).		
	13	Composition and structure of gram-positive and gram-		
		negative cell walls.		
	14	Cell membrane structure, function, and composition in		
		bacteria and archaea.		
	15	Cytoplasmic structures (e.g., ribosomes, inclusion bodies).		
	16	Endospore formation and sporulation stages.		
IV	Benet	ficial & Harmful Microorganisms	10	15
	17	Roles of beneficial soil microbes like PGPR and		
		mycorrhizae.		
	18	Biopesticides and biocontrol agents.		
	19	Beneficial microbes in food industries.		
	20	Application of microbes in pharmaceutical industries.		
	21	Overview of pathogenic bacteria, fungi, protozoa, and		
		viruses.		
	22	Impact of microorganisms on human, animal, and plant		
		health.		
V	Pract	ical Applications in Microbiology	30	
	1	Introduction to laboratory instruments and safety		
		precautions.		
	2	Common methods of sterilization.		
	3	Microscope maintenance and usage.		

•

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

Mapping of COs with PSOs and POs:

	PSO1	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
		2	3		5							
CO1	3		2	3		3		2	3		3	
CO2	3			2		3		3	3		2	
CO3	3		3			2		3		2	3	
CO4	2	3				2	3	3		2		
CO5		3	3	3					3	3		

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

Course Outcome (CO)	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark	\checkmark	\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	
CO4	\checkmark		\checkmark	
CO5				\checkmark

MBY2CJ 101/ MBY2MN100. BASIC TECHNIQUES IN MICROBIOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY2CJ 101/MBY2	2MN100				
Course Title	Basic Techniques in N	Microbiology	7			
Type of Course	Major/Minor					
Semester	II					
Academic Level	100 - 199					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Nil					
Course	This preliminary co	ourse introd	uces the ba	asic techniqu	es used in	
Summary	microbiology. It enab	oles the stude	ents to acquir	re a sound the	eoretical and	
	practical knowledge on microscopy techniques, staining methods, media					
	and methods for cult	uring the mi	croorganisms	s and culture	preservation	
	strategies.					

Course Outcomes (CO):

÷.

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
CO1	Master the use of various microscopy techniques, including electron, phase contrast, and fluorescence microscopy, to analyze microorganisms.	(U)	(P)	Internal Exam, Assignment, End Semester Examinations
CO2	Execute and differentiate between multiple staining techniques, such as Gram, acid-fast, and capsule staining, to identify and classify microbial structures.	(Ap)	(P)	Internal Exam, Assignment, End Semester Examinations
CO3	Prepare, select, and utilize appropriate culture media for the growth of aerobic and anaerobic microorganisms.	(Ap)	(P)	Internal Exam, End Semester Examinations
CO4	Implement isolation and culture techniques to maintain pure microbial cultures and apply preservation methods for long- term use.	(An)	(P)	Internal Exam, End Semester Examinations
CO5	Demonstrate proficiency in microbiological laboratory techniques through practical application and understanding of	(Ap)	(C)	Practical assessments

	theoretical concepts.						
* - Re	emember (R), Understand (U), Apply	(Ap), Analyse	(An), Evaluate (E), Create (C)			
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metao	cognitive Knowledge (M)						

Detailed Syllabus:

•

Module	Unit	Content	Hrs (45	Marks (70)
T	MICI	DOSCOBY	+30)	15
I		Introduction to microscope resolving power numerical	10	15
	1	aperture oil immersion objective		
	2	Types of microscopes - bright field dark field		
	3	Phase contrast, confocal microscopes		
	<u> </u>	Fluorescent microscopes		
	5	Flectron microscopy - TEM and SEM		
	6	Electron microscopy - sample preparation & fixation		
	Ŭ	labelling & storage of slides		
Π	STAI	NING	10	15
	7	Mechanism of staining - Basic dyes, Acidic dyes,		
		Bacterial smear preparation and fixation.		
	8	Simple Staining, Differential staining- Gram staining,		
		Acid fast staining,		
	9	Staining specific structures-Endospore staining, Negative		
		staining, Capsule staining, Flagellar staining,		
	10	Fungal staining		
	11	Preparation of permanent slides		
III	CUL	ΓURE MEDIA	15	25
	12	Solid and liquid media, simple and complex, synthetic or		
		defined media.		
	13	Selective, enrichment, enriched media		
	14	differential, indicator media, Transport media		
	15	Anaerobic media- thioglycollate medium, Robertson's		
		media.		
	16	Cultivation of anaerobic bacteria -Production of vacuum,		
		displacement of oxygen with other gases, chemical		
		methods, biological methods and reduction of medium.		
IV	CUL	ΓURE METHODS -	10	15
	17	Isolation of microbes- Dilution plating and enrichment		
	10	technique.		
	18	Pure culture techniques-Streak, spread, pour plate		
	10	methods		
	19	Stab culture, stroke culture and lawn culture.		
	20	Culture preservation strategies-regular subculture, paraffin		

		method, storage in soil, storage in silica gel		
	21	Storage at refrigerator or cold room storage, storage by		
		freeze drying and drying, preservation under liquid		
		nitrogen		
	22	Microbial culture collections		
V	Pract	ical Applications in Microbiology	30	
	1	Staining procedures for microorganisms		
	2	Microscopic observation of microorganisms		
	3	Culture media prepartion		
	4	Demonstration/research institute visit - dark field, phase		
		contrast, confocal, fluorescent, Electron microscopes		

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 2	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
	1	Δ	3		5							
CO1	3		2	3	3		3		2	3	3	
CO2	3		3	2	3		3		3	2	3	2
CO3	3		3		2		2		3		3	3
CO4	2	3	3		2		2	3	3		2	
CO5	2		2	3	3		3		2	3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

со	Internal Exam	Assignmen t	End Semester Examinations	Practical Assessment
CO1	\checkmark	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark		\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark
CO5				\checkmark

MBY3CJ 201. MICROBIAL PHYSIOLOGY

Programme	B. Sc. Microbiology									
Course Code	MBY3CJ 201									
Course Title	Microbial Physiology	r								
Type of Course	Major									
Semester	III	II								
Academic Level	00 - 299									
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours					
		per week	per week	per week						
	4	3	-	2	75					
Pre-requisites	Nil									
Course	This course provides	s an in-dept	h understand	ling of micro	obial physiology,					
Summary	covering topics such	as nutritiona	al diversity, 1	nutrient transp	port mechanisms,					
	microbial growth ki	netics, quan	ititative mea	surement of	microbes , and					
	reproduction mechani	isms in bacte	ria.							

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used						
		Level*	Category#							
CO1	Analyze the nutritional requirements and diversity in microorganisms.	(An)	(C)	Quizzes, Midterm Exam						
CO2	Explain nutrient transport mechanisms and their significance in microbial physiology.	(U)	(C)	Assignments, Instructor- created exams						
CO3	Evaluate factors affecting microbial growth and growth kinetics in batch and steady state systems	(E)	(P)	End Semester Examinations, Practical assessments						
CO4	Assess various quantitative methods for enumeration of bacteria and virus.	(An)	(P)	End Semester Examinations, Practical assessments						
CO5	Demonstrate methods for culturing, quantifying, and analyzing microbial growth in practical settings.	(Ap)	(P)	Practical assessments, Lab Reports						
* - Remo # - Factu Knowled	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

Detaile	ed Sylla	bus:		
Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Micro	bial Nutrition and Nutritional Diversity	10	15
	1	Nutritional requirements of bacteria: Major and Minor		
		Elements.		
	2	Nutritional Diversity in Microorganisms.		
	3	Nutritional Types: Autotrophy, Heterotrophy,		
		Chemotrophy, Phototrophy, Lithotrophy, and		
		Organotrophy.		
	4	Acetogens and Methanogens: Methanogenesis and its		
		importance.		
	5	Major Nutritional Groups of Bacteria: Classification and its		
		role.		
II	Nutrie	nt Transport Mechanisms	10	15
	6	Diffusion, Osmosis, Active Transport, Passive Transport,		
	_	Group Translocation		
	7	Electrogenic and Electroneutral Transport with examples		
	8	Quorum Sensing – Mechanism and Signalling Molecules.		
	9	I lon Channels and pumps in bacteria		• •
111	Micro	bial Growth	15	20
	10	Factors affecting Microbial growth – Temperature		
	11	Factors affecting Microbial growth – pH		
	12	Factors affecting Microbial growth – Oxygen, Radiation,		
		Water activity		
	13	Growth curve and its significance		
	14	Growth Kinetics- Batch system, Steady state system		
	15	Synchronous culture		
	16 D	Diauxic culture	10	•
IV	Bacter	ial and Viral Quantitation Methods	10	20
	17	Quantitative measurement of bacterial growth by direct		
	10	methods		
	18	Quantitative measurement of bacterial growth by indirect		
	10	Methods		
	19	viral quantitative techniques - Plaque assay and Pock		
	20	assay Virol Cultivation methods		
	20	Viral Cultivation methods		
	21	fragmentation,		
	22	Mechanism of sporulation.		

V	Practic	eals	30	30
	23	1. Isolation of bacteria by Pure Culture Techniques .		
		2. Effects of temperature, pH, and aeration on microbial growth.		
		3. Bacterial Growth curve		
		4. Enumeration of bacteria by indirect methods -		
		Spread and Pour plate techniques.		
		5. Enumeration of bacteria by Direct Methods -		
		Breeds Count, Petroff Hausser Chamber		

- 1. Moat, A. G., Foster, J. W., & Spector, M. P. (2002). *Microbial Physiology* (4th ed.). Wiley-Liss.
- 2. Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2014). *Brock Biology of Microorganisms* (14th ed.). Pearson.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2018). *Microbiology: An Introduction* (13th ed.). Pearson.
- 4. Black, J. G. (2012). *Microbiology: Principles and Explorations* (8th ed.). Wiley.
- 5. Atlas, R. M. (2010). Principles of Microbiology. McGraw-Hill Education.
- Foster, J. W., & Hall, H. K. (1996). *Microbial responses to environmentally induced stress*. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, & H. E. Umbarger (Eds.), *Escherichia coli and Salmonella: Cellular and Molecular Biology* (Vol. 2, pp. 1526-1539). ASM Press.

	PSO1	PSO2	PSO 3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		3		3		2		3	
CO2	2		3		2		2		3		2	
CO3		3		3				3		3		3
CO4			3	2					3	2		2
CO5				3	3					3	3	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark	\checkmark	\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3	\checkmark		\checkmark	\checkmark
CO4		\checkmark	\checkmark	\checkmark
CO5				\checkmark

MBY3CJ 202. MICROBIAL METABOLISM

Programme	B. Sc. Microbiology	B. Sc. Microbiology								
Course Code	MBY3CJ 202/MBY3	MN 200								
Course Title	Microbial Metabolism									
Type of Course	Major/Minor									
Semester	III									
Academic Level	200 - 299	200 - 299								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	3	-	2	75					
Pre-requisites	Nil									
Course	This introductory co	urse covers	the fundame	ntal aspects o	of Microbial					
Summary	Metabolism. It invol	ves converti	ng nutrients	into energy a	ind essential					
	biomolecules like	ATP, crucia	1 for micro	organism su	rvival. Key					
	pathways like glycol	ysis and the	Krebs cycle	drive energy	production.					
	Microbes adapt to div	verse enviror	nments by uti	lizing various	s carbon and					
	nitrogen sources. U	Inderstanding	g microbial	metabolism	is vital for					
	biotechnology, indust	try, and envi	conmental sol	utions.						

Course Outcomes (CO):

-

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Explain the nutritional requirements and types of bacteria based on energy, carbon, and electron sources.	U	F	Internal Exam, Assignment, End Semester Exam
CO2	Describe key metabolic pathways, including respiration and fermentation in microbial systems.	U	С	Internal Exam, Assignment, End Semester Exam
CO3	Analyze chemoheterotrophic and chemolithotrophic metabolism, focusing on energy production mechanisms.	An	С	Internal Exam, End Semester Exam
CO4	Evaluate microbial metabolic strategies in environmental adaptation and biotechnological applications.	E	М	Internal Exam, End Semester Exam
CO5	Perform and interpret experiments related to microbial growth curves, biofilm formation, and metabolic pathways.	Ар	P	Practical Assessment
* - Re	emember (R), Understand (U), Apply (Ap), Analyse (A	n), Evaluate (E	E), Create (C)
# - Fa	ctual Knowledge(F) Conceptual Knowled	lge (C) Proce	dural Knowled	ge (P)

÷

.

Metacogn	itive Kn	owledge (M)		
Detailed S	Syllabus			-
Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Nutrit	ional requirements of bacteria	10	15
	1	C, electron, energy, and minerals. Nutritional types of		
		bacteria- based on the requirement and their combinations		
	2	Modes of bacterial nutrition.		
	3	Transport of nutrients by bacteria		
	4	Passive, active and group translocation		
	5	Symport, antiport and uniport, electrogenic and		
		electroneutral transport, transport of iron		
II	Chem	oheterotrophic Metabolism - Aerobic Respiration	10	15
	6	Concept of aerobic respiration		
	7	Sugar degradation pathways i.e. EMP, ED, Pentose		
		phosphate pathway. TCA cycle.		
	8	Electron transport chain		
	9	Components of respiratory chain, comparison of		
		mitochondrial and bacterial ETC, electron transport		
		phosphorylation		
III	Chem	oheterotrophic Metabolism- Anaerobic respiration and	15	20
	ferme	ntation		
	10	Anaerobic respiration with special reference to dissimilatory		
		nitrate reduction		
	11	Fermentation - Alcohol fermentation		
	12	Pasteur effect;		
	13	Lactate fermentation		
	14	Homofermentative		
	15	Concept of linear and branched fermentation pathways.		
	16	Heterofermentative pathways		
IV	Chem	olithotrophic and Phototrophic Metabolism	10	20
	17	Introduction to aerobic and anaerobic chemolithotrophy		
	18	Hydrogen oxidation (definition and reaction) and		
		methanogenesis (definition and reaction).		
	19	Introduction to phototrophic metabolism		
	20	Groups of phototrophic microorganisms		
	21	Anoxygenic vs. oxygenic photosynthesis with reference to		
		photosynthesis in green bacteria		
	22	Purple bacteria and cyanobacteria.		
V	Practi	cal Applications in Microbiology	30	
	1	Growth curve of bacteria		
	2	Carbohydrate fermentation by different microbes		
	2	Thermal death point. Thermal death time		
	5			
	1			1

÷

Reference :

-

- Madigan, M. T., & Martinko, J. M. (2014). *Brock Biology of Microorganisms* (14th ed.). PrenticeHall International Inc.
- Moat, A. G., & Foster, J. W. (2002). *Microbial Physiology* (4th ed.). John Wiley & Sons.
- Reddy, S. R., & Reddy, S. M. (2005). *Microbial Physiology*. Scientific Publishers India.
- Gottschalk, G. (1986). Bacterial Metabolism (2nd ed.). Springer Verlag.
- Stanier, R. Y., Ingrahm, J. I., Wheelis, M. L., & Painter, P. R. (1987). *General Microbiology* (5th ed.). McMillan Press.

	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3		3	2	3		3		
CO2	3		2	3	3	3	3	2	1			
CO3	3	3		2	3	2	3	1			2	
CO4	2	3		3		3	3	2	2			
CO5		3	3	3		1	2	3	3			

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

	Internal Exam	Assignment	Practical Assessment	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark			\checkmark
CO5			\checkmark	

MBY4CJ 203. ENVIRONMENTAL AND SANITATION MICROBIOLOGY

Programme	B. Sc. Microbiology									
Course Code	MBY4CJ 2	MBY4CJ 203								
Course Title	Environme	Environmental and Sanitation Microbiology								
Type of	Major									
Course										
Semester	IV									
Academic	200 - 299	200 - 299								
Level										
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours					
			per week	per week						
	4	3	-	2	75					
Pre-requisites	Nil									
Course	This course explores the role of microorganisms in environmental and									
Summary	sanitation c	sanitation contexts, focusing on their impact on air and water quality, waste								
	managemen	nt, and their use in bio	remediation	and pollution	control.					

Course Outcomes (CO): .

÷.

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
	Understand microbial dynamics			Internal Exam,			
CO1	in air and their implications on	(U)	(C)	End Semester			
	health.			Exam			
	Evaluate methods of microbial			Practical			
CO2	sampling and monitoring in	(E)	(P)	Assessments,			
	environmental settings.			Assignments			
	Analyze aquatic ecosystems and			Assignments End			
CO3	the role of microbes in water	(An)	(C)	Assignments, Enu Somostor Exom			
	quality management.			Semester Exam			
	Apply microbial techniques for			Drastical			
CO4	solid waste management and	(Ap)	(P)	Accomments			
	bioremediation.			Assessments			
	Discuss the impact of microbial			Internal Exem			
CO5	processes on pollution control	(U)	(C)	Internal Exam,			
	and environmental restoration.			Assignments			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# -	Factual Knowledge(F) Conceptua	l Knowledge	(C) Procedur	cal Knowledge (P)			
Metao	cognitive Knowledge (M)						

Detailed Syllabus:

è

Modul e	Unit	Content	Hrs (45 +30)	Mark s -70
Ι	Microbiol	ogy of air	10	15
	1	Atmospheric layers, organisms in air, distribution and sources		
	2	Disease forecasting in plants		
	3	Indoor and outdoor air		
	4	Droplet nuclei, aerosol, infectious dust		
	5	Microbiological sampling of air - gravity slide, plate exposure, vertical cylinder, Hirst spore trap, Rotorod sampler, Andersen sampler, hand held air sampler, impingers and filtration. Advantages and disadvantages of these techniques		
	6	Brief account of air borne transmission of harmful microbes and air borne infections		
II	Aquatic Mi	icrobiology	10	15
	7	Aquatic environment, distribution of microorganisms in aquatic environment - fresh water, estuarine and marine water systems		
	8	Factors influencing growth and distributions		
	9	Water Purification procedures for single dwelling and municipal water supplies		
	10	Concept of indicator organisms, Microbiological examination of water. BOD, COD		
	11	Wastewater treatment steps and methods		
	12	Eutrophication and algal bloom		
	13	Brief account of water borne diseases and transmission		
III	Solid Wast	e Management	15	25
	14	Sources and types of solid waste		
	15	need for management		
	16	Landfills, composting, vermi- composting, anaerobic digesters, methanogenesis and production of biogas		
	17	Design and management of biogas plants		
IV	Bioremedia	ntion	10	15
	18	Novel pollutants, persistence and biomagnification		

	19	Recalcitrant halocarbons- nitroaromatic compounds, PCB, alkyl benzene sulphonates	
	20	Petroleum hydrocarbons - their biodegradation	
	21	Bioremediation of polluted environment - Oil spills, heavy Metals and other xenobiotics.	
	22	Microbial leaching and corrosion of metals	
V	Open ende		
	1		
	2	Waste management strategies in the local bodies: Discussion, Visit, evaluation, suggestion for improvements	

- 1. Textbook of Biochemistry by Lehninger
- 2. Biochemistry by Stryer
- 3. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA,
- 4. Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University Press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira P,
- 7. Darnell J., 1995. Scientific American Books.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S.Old and S.B.Primrose. 1989. Blackwell Scientific Publications, London
- 10. Cell Biology by Karp

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2		1			3	2	1		2	1
CO2	2	3	3	2			2	1	3	2	3	2
CO3	1	2	3		2	1	2	3	2	1	1	3
CO4	3		2	3	1	2	1	2	3	3	2	1
CO5	2	1		2	3		3	2	1	2	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark		\checkmark	
CO2		\checkmark		\checkmark
CO3		\checkmark	\checkmark	
CO4				\checkmark
CO5	\checkmark	\checkmark		

MBY4CJ 204. SOIL AND AGRICULTURAL MICROBIOLOGY

Progr	amme	B. Sc. Microbiology	B. Sc. Microbiology								
Cours	se Code	MBY4CJ 204									
Cours	se Title	Soil and Agricultural Microbiology									
Туре	of Course	Major									
Seme	ester	IV									
Acad	emic	200 - 299									
Level											
Cours	se Details	Credit	Lectu	ure	Tutor	ial Practice	al Total				
			per w	reek	per we	eek per wee	k Hours				
		4	3		-	2	75				
Pre-re	equisites	Basic knowledge of m program	nicroor	ganisi	ns durir	ng previous yea	urs of this				
Cours	se	This course provides	a com	prehe	ensive o	verview of so	il microbiology,				
Summ	nary	biogeochemical cycle	es, biol	ogica	l interac	ctions, and the	applications of				
		microbes in agricult	ture, a	long	with i	nsights into	microbial plant				
		pathology. Overall,	it c	offers	a de	ep understan	ding of how				
		microorganisms, soil	healtl	h, an	d plant	diseases are	interconnected,				
		providing practical ins	sights f	for sus	stainable	e agricultural p	ractices.				
Cours	e Outcomes	s (CO):					•				
CO		CO Statement		Cog	gnitive	Knowledge	Evaluation				
				Le	evel*	Category#	Tools used				
	Understand	d the general properties			Internal Exam.						
CO1	soil and the	e role of microorganism	ns in	(U)		(C)	Midterm Exam				
	soil health.										
~ ~ ~	Outline the	e role of microorganism	ns in		~		Assignments,				
CO2	biogeocher	mical cycling and their		(R)		(F)	End Semester				
	implication	ns on soil fertility.					Exam				
G Q	Develop a	better knowledge of the	e				Instructor-				
CO3	interaction	of microorganisms wit	th · · ·		(U)	(C)	created Exams,				
	each other	and with plants and and	imals.				Quizzes				
		d the role of microbes a	IS				Internal Exam,				
CO4	biofertilize	ers and biopesticides in			(E)	(P)	End Semester				
	agriculture	e and their advantage ov	/er				Exam				
	chemical c	ounterparts.		ļ							
005	Develop pr	ractical skills in the isol	lation,		• `		Practical				
COS	J5 enumeration, and identification of				Ap)	(P)	Assessments,				
microbes from soil and plants. Lab Reports											
* 1	1 / D		1 (• `		1 ()						
	emember (R), Understand (U), App $1 + 1 + (T)$	iy (Ap), Ana	uyse (A	n), Evaluate (E	(C), Create (C)				
# - Fa	ictual Know	ledge(F) Conceptual Ki	nowled	ige (C) Proce	aural Knowled	ge (P)				
Meta	Metacognitive Knowledge (M)										

.

Module Unit Content Hrs (45 (70) +30) Marks (70) +30) I Introduction to soil Microbiology 10 15 1 Properties of soil (structure, texture, formation) 1 1 2 Types of soil microorganisms 1 1 3 Role of microorganisms in soil fertility 1 1 4 Factors affecting microbial population in soil-moisture, pH, temperature, organic matter, agronomic practices, etc 2 5 Humus formation and its significance 2 2 6 Biogeochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 1 1 7 Soil fertility tests 1 10 15 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 2 9 Microbe-Microbe Interactions. Roots - Rhizosphere and Microbe-Plant Interactions. Roots - Rhizosphere and Microbe-Plant Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiotic 15 25 11 Microbe animal Interactions - (Rhizobium, Frankia) 2 13 12 Symbiotic nutrigen fixation - (Rhizobium, Frankia) <th>Detaile</th> <th>d Sylla</th> <th>bus:</th> <th></th> <th>1</th>	Detaile	d Sylla	bus:		1
Introduction to soil Microbiology 10 15 1 Properties of soil (structure, texture, formation) 1 2 Types of soil microorganisms in soil fertility 1 3 Role of microorganisms in soil fertility 1 4 Factors affecting microbial population in soil- moisture, pH, temperature, organic matter, agronomic practices, etc 2 5 Humus formation and its significance 2 2 6 Biogeochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 1 1 7 Soil fertility tests 1 1 15 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 2 9 Microbe-Microbe Interactions. Roots-Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 2 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter	Module	Unit	Content	Hrs (45 +30)	Marks (70)
1 Properties of soil (structure, texture, formation) 1 2 Types of soil microorganisms 1 3 Role of microorganisms in soil fertility 1 4 Factors affecting microbial population in soil- moisture, pH, temperature, organic matter, agronomic practices, etc 2 5 Humus formation and its significance 2 6 Biogocchemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 1 7 Soil fertility tests 1 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 10 15 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 2 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 11 Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 1 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospririllum. Cyanobacteria (No	Ι	Intro	duction to soil Microbiology	10	15
2 Types of soil microorganisms 1 3 Role of microorganisms in soil fertility 1 4 Factors affecting microbial population in soil- moisture, pH, temperature, organic matter, agronomic practices, etc 2 5 Humus formation and its significance 2 6 Biogeochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 1 7 Soil fertility tests 1 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizze, Arrial Plant surfaces 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 11 Microbe animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 13 Symbiotic microbes - Azotobacter 1 14 Non symbiotic microbes - Azotobacter 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17		1	Properties of soil (structure, texture, formation)	1	
3 Role of microorganisms in soil fertility 1 4 Factors affecting microbial population in soil- moisture, pH, temperature, organic matter, agronomic practices, etc 2 5 Humus formation and its significance 2 6 Biogocochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 1 7 Soil fertility tests 1 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 10 Microbe-Animal Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 11 Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nutrigen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Glococapsa), Azolla-Anabacna System 3 1 16 Bio pesticides on soil microflora 2 1 18 Effect		2	Types of soil microorganisms	1	
4 Factors affecting microbial population in soil-moisture, pH, temperature, organic matter, agronomic practices, etc 2 5 Humus formation and its significance 2 6 Biogeochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 2 7 Soil fertility tests 1 II Biological Interactions 10 15 8 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 9 Microbe-Plant Interactions. Roots- Rhizosphere and Microbe-Plant Interactions. Roote of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Microbe- Animal Interactions - (Rhizobium, Frankia) 2 2 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 3 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloecapsa), Azolla-Anabaena System 2 3 15 Associative Symbiosis - Azotobacter 1 1 15 14 Non symbiotic microbes - Azotobacter 1 1 1 <td></td> <td>3</td> <td>Role of microorganisms in soil fertility</td> <td>1</td> <td></td>		3	Role of microorganisms in soil fertility	1	
Itemperature, organic matter, agronomic practices, etc 1 5 Humus formation and its significance 2 6 Biogeochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 1 7 Soil fertility tests 1 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 10 15 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 2 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 2 111 Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 112 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 12 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 3 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azotobacteria 3 2 16 Bio pesticides- bacterial, fungal and viral biopesticides		4	Factors affecting microbial population in soil- moisture, pH,	2	
5 Humus formation and its significance 2 6 Biogeochemical cycle. Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 2 7 Soil fertility tests 1 II Biological Interactions 10 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 1 13 Symbiotic nutrient mobilizers - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 1 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 1 1 15 Associative Symbiosis - Azotobacter 1 1 15 14 <t< td=""><td></td><td></td><td>temperature, organic matter, agronomic practices, etc</td><td></td><td></td></t<>			temperature, organic matter, agronomic practices, etc		
6 Biogeochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles. 2 7 Soil fertility tests 1 II Biological Interactions 10 15 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 3 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 3 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 3 11 Microbe- Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 2 11 Applications of microbes in agriculture : Biofertilizers & Ecomycorrizae 15 25 12 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 3 16 Bio pesticides on soil microflora 2 2 3 14 Non symbiotic son soil microflora 2 1 18 Effect of pesticides on soil microflora 2		5	Humus formation and its significance	2	
7 Soil fertility tests 1 II Biological Interactions 10 15 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 1 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 1 18 Effect of pesticides on soil microflora 2 1 19 Plant pathology- symptoms, disease cycle, and control measures 3 1 20 Bacterial diseases		6	Biogeochemical cycle- Role of microorganisms in Carbon, Phosphorous, Nitrogen, and sulfur cycles.	2	
II Biological Interactions 10 15 8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 3 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 3 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe- Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 1 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azotobacter 1 1 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 1 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 1 18 Effect of pesticides on soil microflora 2 1 19 Plant pathology - symptoms, disease cycle, and control measures 2 1 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown g		7	Soil fertility tests	1	
8 Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism 3 9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azotobacter 1 1 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 1 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 1 18 Effect of pesticides on soil microflora 2 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3 3	II	Biolo	gical Interactions	10	15
9 Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation. 3 10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe-Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 11 Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 3 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 1 16 Bio pesticides- bacterial, fungal and viral biopesticides over their chemical counterparts 2 1 18 Effect of pesticides on soil microflora 2 1 19 Plant pathology - symptoms, disease cycle, and control measures 2 1 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3 1		8	Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism	3	
10 Microbe-Plant Interactions. Roots- Rhizosphere and Mycorrhizae, Aerial Plant surfaces 2 11 Microbe- Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology 10 15 19 Plant pathology- symptoms, disease cycle, and control measures 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 2		9	Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation.	3	
Mycorrhizae, Aerial Plant surfaces 1 11 Microbe- Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology 10 15 19 Plant pathology- symptoms, disease cycle, and control measures 3 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		10	Microbe-Plant Interactions. Roots- Rhizosphere and	2	
11 Microbe- Animal Interactions. Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont 2 III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology- symptoms, disease cycle, and control measures 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3			Mycorrhizae, Aerial Plant surfaces		
Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiont Ruminants, Nematophagus fungi, Luminescent bacteria as Symbiotic III Applications of microbes in agriculture : Biofertilizers & Biopesticides 15 25 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology 10 15 19 Plant pathology- symptoms, disease cycle, and control measures 3 3 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3 4		11	Microbe- Animal Interactions. Role of Microbes in	2	
Symbiont III Applications of microbes in agriculture : Biofertilizers & 15 25 Biopesticides 12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 2 14 Non symbiotic microbes - Azotobacter 1 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 2 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 10 18 Effect of pesticides on soil microflora 2 2 19 Plant pathology - symptoms, disease cycle, and control measures 2 20 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3 2			Ruminants, Nematophagus fungi, Luminescent bacteria as		
IIIApplications of microbes in agriculture : Biofertilizers & Biopesticides152512Symbiotic nitrogen fixation - (Rhizobium, Frankia)213Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae214Non symbiotic microbes - Azotobacter115Associative Symbiosis - Azotobacter116Bio pesticides- bacterial, fungal and viral biopesticides317Advantages of biofertilizers and biopesticides over their chemical counterparts218Effect of pesticides on soil microflora219Plant pathology- symptoms, disease cycle, and control measures220Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus3			Symbiont		
12 Symbiotic nitrogen fixation - (Rhizobium, Frankia) 2 13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 14 Non symbiotic microbes - Azotobacter 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology- symptoms, disease cycle, and control measures 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3 21 Functional Wills for the functional conterional conterion 3	III	Appl Biop	ications of microbes in agriculture : Biofertilizers & esticides	15	25
13 Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae 2 14 Non symbiotic microbes - Azotobacter 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology- symptoms, disease cycle, and control measures 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		12	Symbiotic nitrogen fixation - (Rhizobium, Frankia)	2	
Ectomycorrizae 1 14 Non symbiotic microbes - Azotobacter 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology 10 15 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		13	Symbiotic nutrient mobilizers - Endomycorrhizae and	2	
14 Non symbiotic microbes - Azotobacter 1 15 Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over their chemical counterparts 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology- symptoms, disease cycle, and control measures 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3			Ectomycorrizae		
15 Associative Symbiosis - Azospirillum. Cyanobacteria 3 15 Associative Symbiosis - Azospirillum. Cyanobacteria 3 16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over 2 18 Effect of pesticides on soil microflora 2 18 Effect of pesticides on soil microflora 2 19 Plant pathology- symptoms, disease cycle, and control 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		14	Non symbiotic microbes - Azotobacter	1	
Image: Instruction of the optimization of the optization of the optimization of the optimization of the optim		15	Associative Symbiosis - Azospirillum Cyanobacteria	3	
16 Bio pesticides- bacterial, fungal and viral biopesticides 3 17 Advantages of biofertilizers and biopesticides over 2 18 Effect of pesticides on soil microflora 2 IV Plant pathology 10 15 19 Plant pathology- symptoms, disease cycle, and control measures 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3			(Nostoc Gloeocapsa) Azolla-Anabaena System	-	
10 Dio pesiterices odeterial, rangar and vitar otopesiterides 2 17 Advantages of biofertilizers and biopesticides over 2 18 Effect of pesticides on soil microflora 2 IV Plant pathology 10 15 19 Plant pathology- symptoms, disease cycle, and control 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		16	Bio pesticides- bacterial fungal and viral biopesticides	3	
Image: Solution of the information		17	Advantages of highertilizers and highesticides over	2	
Image: Interference of the optimization of the optization of the optimization of the optimization of the opti		1,	their chemical counterparts	2	
IV Plant pathology 10 15 19 Plant pathology- symptoms, disease cycle, and control 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		18	Effect of pesticides on soil microflora	2	
19 Plant pathology- symptoms, disease cycle, and control 2 19 Plant pathology- symptoms, disease cycle, and control 2 20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3	IV	Plant	t pathology	10	15
20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		19	Plant pathology- symptoms, disease cycle, and control	2	
20 Bacterial diseases - Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus 3		-	measures		
bacterial leaf blight of rice, crown galls, bacterial cankers of citrus		20	Bacterial diseases - Angular leaf spot of cotton	3	
cankers of citrus		-	bacterial leaf blight of rice, crown galls, bacterial	-	
			cankers of citrus		
21 Fungal disease- Wilt of tomato - Fusariumoxysporum 3		21	Fungal disease- Wilt of tomato - <i>Fusariumoxysporum</i>	3	

		Red rot of sugarcane - <i>Colletotrichumfalcatum</i> , Early blight of potato - <i>Alternariasolani</i> . Wilt of cotton		
	22	Viral diseases- Papaya ringspot, tomato yellow leaf	2	
		curl, banana bunchy top		
V	Pract	ical Applications in Soil & Agricultural Microbiology	30	
	1	Isolation of Rhizobium and Azotobacter		
	2	Ammonification and nitrification of organic		
		compounds		
	3	Enumeration of bacteria, fungi and actinomycetes from		
		soil		
	4	Isolation of plant pathogenic bacteria		
	5	Isolation of plant pathogenic fungi		

- 1. Microbial Ecology. John Wiley & Sons, Inc., New York 2.
- 2. Introduction to Soil Microbiology by Alexander, M.(1977). John Wiley & Sons, Inc.,
- 3. Agricultural microbiology, 2nd edition. Rangaswami G., Bagyaraj D. J. Prentice hall of India.
- 4. Ronald M. Atlas., Richard Bartha. Microbial Ecology. Benjamin Cummings. 1998
- 5. Robert, L Tate (1995). Soil Microbiology. First edition, John Wiley and Sons, Inc. New York edition. Pearson Education.
- 6. Rangaswami G and Mahadevan A (2002). Disease of Crop Plants in India. Fourth edition, PHI Learning (P) Ltd., New Delhi.
- 7. Subba Rao NS (2004). Soil Microbiology. Fourth edition, Oxford and IBH Publishing Co.Pvt. Ltd., New Delhi.
- 8. Mishra RR (2004). Soil Microbiology. First edition, CBS Publishers and distributors, New Delhi.
- 9. Devlin RM. (1975). Plant Physiology. 3rd edition, Willard Grant Press.
- 10. Stolp H. (1988). Microbial Ecology: Organisms Habitats Activities. Cambridge University Press, Cambridge, England.
- 11. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego
- 12. Lucas JA. (1998). *Plant Pathology and Plant Pathogens*. 3rd edition. Blackwell Science, Oxford.
- 13. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 14. Rangaswami G. (2005). *Diseases of Crop Plants in India*. 4th edition. Prentice Hall of India Pvt. Ltd., New Delhi.
- 15. Singh RS. (1998). *Plant Diseases Management*. 7th edition. Oxford & IBH, New Delhi.
- Raina M.Maier. Ian L.Pepper and Charles P.Gerba. (2000)EnvironmentalMicrobiology.Academic press California.UK

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3				2	
CO2	2						2		3		2	2
CO3	3		3						3		3	3
CO4		3		3				3		3		
CO5			3		3					3	3	

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

со	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark		\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3	\checkmark		\checkmark	
CO4	\checkmark		\checkmark	\checkmark
CO5				\checkmark

MBY4CJ205. MOLECULAR BIOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY4CJ205								
Course Title	Molecular biology								
Type of Course	Major								
Semester	IV								
Academic Level	200 - 299								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Nil								
Course	This course delves	into molecu	lar biology's	fundamenta	l principles,				
Summary	focusing on the struct	ure, function	, and interact	ions of biome	lecules such				
	as DNA, RNA, pro	as DNA, RNA, proteins, and lipids. Students explore the intricate							
	mechanisms that driv	e cellular pro	cesses and g	enetic inherita	ance through				
	lectures, laboratory se	essions, and o	liscussions.						

Course Outcomes (CO):

•

CO	CO Statement	Cognitiv	Knowledge	Evaluation
		e Level*	Category#	Tools used
CO1	Understand the fundamental aspects of nucleic acids and their role as genetic material.	(U)	(C)	Internal Exam, End Semester Examination
CO2	Evaluate the mechanisms of DNA replication, mutation, and repair in prokaryotes and eukaryotes.	(E)	(P)	Assignments, End Semester Examination
CO3	Analyze the processes of transcription and translation, and their regulation in prokaryotes and eukaryotes.	(An)	(P)	Assignments, End Semester Examination
CO4	Apply knowledge of genetic mutations to practical scenarios in molecular biology.	(Ap)	(P)	Internal Exam, Practical Assessments
CO5	Demonstrate practical skills in molecular biology techniques, including DNA, RNA isolation, and gene expression analysis.	(Ap)	(P)	Practical Assessments
* - Re	emember (R), Understand (U), Apply (Ap), A	(\overline{An})), Evaluate $\overline{(E)}$,	Create (C)
# - Fa	ictual Knowledge(F) Conceptual Knowledge	(C) Procedu	iral Knowledge	e (P)
Ivieta	cognitive Knowledge (NI)			

.

.

Detailed Syllabus:

è

Module	Unit	Content	Hrs (45 +30)	Marks -70
Ι	Basic	Concept of Genetic Materials	10	15
	1	Nucleic acid as the genetic material (Experimental proof)	1	
	2	Structure and functions of Nucleic acids, types and different forms	2	
	3	Organisation of bacterial and eukaryotic chromosomes, Histone and their functions	3	
	4	Denaturations and renaturations, Cot curve	2	
	5	DNA topology - linking number, topoisomerases	2	
Ι	Replic	ation of DNA	10	15
	6	Semi-conservative model of DNA	2	
	7	Features of prokaryotic DNA replication.	3	
	8	Mechanism of eukaryotic DNA replication.	3	
	9	Models of replication in the circular DNA- D-Loop, rolling circle and theta model.	2	
III	Mutat	ion	10	25
	10	Chromosomal Mutations: Deletion, Duplication, Inversion, Translocation,	2	
	11	Aneuploidy and Polyploidy.	1	
	12	Gene mutations: definition and types	1	
	13	Induced versus Spontaneous mutations	1	
	14	Back versus Suppressor mutations	2	
	15	Molecular basis of Mutations about UV light and chemical mutagens	1	
	16	Detection of mutations-Ames test, Replica plating. Concept of Luria Delbruck experiment	2	
IV	Gene	expression Mechanisms	15	15
	17	Transcription- prokaryotic and eukaryotic.	3	
	18	Post-transcriptional modifications	2	
	19	Translation- prokaryotes and eukaryotes	4	
	20	Genetic code.	1	
	21	Post-translational modifications	2	
	22	A brief account of gene regulation in prokaryotes - operon concept - lac and trp operon.	3	
V	Practi	cal Applications in Microbiology	30	
	1	Preparation of buffers		

2	Demonstration of mitosis.	
3	Isolation of genomic DNA from <i>E. coli</i> . and agarose gel electrophoresis	
4	Estimation of DNA.	
5	Isolation of RNA.	
6	Estimation of RNA.	

i.

- 1. Textbook of Biochemistry by Lehninger
- 2. Biochemistry by Stryer
- 3. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA,
- 4. Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University Press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira P,
- 7. Darnell J., 1995. Scientific American Books.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S.Old and S.B.Primrose. 1989. Blackwell Scientific Publications, London
- 10. Cell Biology by Karp

Mapping of COs with PSOs and POs :

СО	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3				2	
CO2	2	3					2	2	3		3	2
CO3	3	3	3				3		3		3	3
CO4		3		3				3		3		
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark		\checkmark	
CO2		\checkmark	\checkmark	\checkmark
CO3		\checkmark	\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark
CO5			\checkmark	\checkmark

MBY5CJ 301. SYSTEMIC BACTERIOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY5CJ 301								
Course Title	Systemic Bacteriolog	у							
Type of Course	Major								
Semester	V								
Academic Level	300-399								
Course Details	Credit Lecture Tutorial Practical Tota								
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Nil								
Course	This course delves	into the n	norphology,	pathogenesis,	, laboratory				
Summary	diagnosis, epidemiolo	diagnosis, epidemiology, prevention, and control of diseases caused by							
	critical bacterial grou	ps. It covers	gram-positiv	e and gram-ne	egative cocci				
	and bacilli, AFB, spir	ochetes, and	obligate intra	acellular bacte	eria				

Course Outcomes (CO):

ł,

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the pathogenic mechanisms and diagnostic methods for gram- positive cocci.	(U)	(C)	Internal Exam, Midterm Exam
CO2	Describe the impact and control strategies of gram-negative bacilli on public health.	(R)	(F)	Assignments, End Semester Exam
CO3	Evaluate the laboratory and clinical diagnosis techniques for AFB and spirochetes.	(E)	(P)	Internal Exam, End Semester Examination
CO4	Apply knowledge of bacterial pathogenesis to develop prevention and control measures.	(Ap)	(P)	Internal Exam, End Semester Examination
CO5	Analyze the epidemiology of diseases caused by obligate intracellular bacteria.	(An)	(C)	Internal Exam, End Semester Examination
* - Re # - Fa Metac	emember (R), Understand (U), Apply (Ap), actual Knowledge(F) Conceptual Knowledg cognitive Knowledge (M)	Analyse (A e (C) Procee	n), Evaluate (H lural Knowled	E), Create (C) lge (P)

Detailed Syllabus:

Module	Unit	Content	Hrs (45 +30)	Marks -70
Ι	Morphology and diagnosis, Epider by Gram Positive	Cultural Characteristics, Pathogenesis, Laboratory niology, Prevention and control of diseases caused and Gram Negative Cocci	10	15
	1	Staphylococcus aureus,		

	2	Streptococcus pneumoniae,		
	3	Streptococcus pyogenes,		
	4	Neisseria gonorrhoeae		
	5	Neisseria meningitidis		
	Morphology an	d Cultural Characteristics, Pathogenesis, Laboratory		
II	diagnosis, Epid	emiology, Prevention and control of diseases caused	10	15
	by Gram positiv	ve Bacilli		
	6	Bacillus anthracis,		
	7	Clostridium botulinum,		
	8	Clostridium tetani,		
	9	Corynebacterium diphtherieae		
	Morphology an	d Cultural Characteristics, Pathogenesis, Laboratory		
III	diagnosis, Epid	emiology, Prevention and control of diseases caused	12	20
	by Gram negati	ve bacilli		
	10	Escherichia coli, Shigella dysentriae,		
	11	Salmonella typhi		
	12	Klebsiella pneumoniae, Proteus		
	13	Vibrio cholerae, Pseudomonas aeruginosa		
	14	Helicobacter pylori, Hemophilus influenzae,		
	15	Bordetella pertrussis,		
	16	Brucella, Yersinia pestis		
IV	Morphology an diagnosis, Epid by AFB, Spiroc	d Cultural Characteristics, Pathogenesis, Laboratory emiology, Prevention and control of diseases caused chetes and obligate intracellular bacteria	13	20
	17	Mycobacterium tuberculosis,		
	18	Mycobacterium leprae,		
	19	Treponema pallidum		
	20	Leptospira interrogans,		
	21	Mycoplasma		
	22	Rickettsiae and Chlamydiae.		
V	Practical		30	30
	1	Isolation and identification of Clinically important bacteria from various samples - Urine, Sputum, blood, pus etc.		
	2	Identification of bacteria via morphological, cultural characteristics, metabolic and biochemical features		
	3	AFB staining		
	4	Differential count of leukocytes		
	5	Blood grouping		
	6	Demonstration of precipitation reactions		

7	Demonstration of agglutination reactions	

- 1. Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz, Melnick erg's Medical Microbiology.24th edition. McGraw Hill Publication.
- 2. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition.
- 3. Elsevier. Joklik WK, Willett HP and Amos DB (1995). Zinsser Microbiology. 19th edition. Appleton- CenturyCrofts publication.
- 4. Willey JM, Sherwood LM, and Woolverton CJ. (2008). Prescott, Harley and Klein's Microbiology. 7th edition. McGraw Hill Higher Education.
- 5. Medical Microbiology : David Greenwood, Slack, Peutherer
- 6. Satish Gupte (2005). The Short Textbook of Medical Microbiology. Eighth edition, Jaypee Brothers, Medical publishers (P) Ltd., New Delhi.
- 7. Baron EJ, Peterson LR and Finegold SM (1994). Bailey and Scott's diagnostic Microbiology. 9th edition, Mosby publications.
- 8. Rajan S (2009). Medical Microbiology. First edition, MJP Publishers, Chennai.
- 9. Rajesh Bhatia and Ratan Lal Ichhpujani (2004). Essentials of Medical Microbiology. Third edition, Jaypee Brothers, Medical Publishers (P) Ltd., New Delhi.
- 10. Medical Microbiology by Macie and McCartney
- 11. Ananthanarayan R and Paniker CKJ. (2005). Textbook of Microbiology. 7th edition (edited by Paniker CKJ).

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2			1		3	2	1		3	
CO2	2	3				2	2	3	2		2	1
CO3	1	2	3		2		1	2	3	2	3	
CO4		3	2	3				3	2	3		2
CO5	3		1		3		3		2		3	3

Mapping of COs with PSOs and POs:

.

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark		\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3		\checkmark	\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark
CO5	\checkmark		\checkmark	\checkmark

MBY5CJ 302-INDUSTRIAL MICROBIOLOGY

Programme	B. Sc. Microbiology				
Course Code	MBY5CJ 302				
Course Title	Industrial Microbiology				
Type of Course	Major				
Semester	V				
Academic Level	300 - 399				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Nil				
Course	This course covers the application of microbiology in the industrial sector,				
Summary	focusing on the processes of fermentation and the production of valuable				
	products from microbes. The course includes practical sessions to				
	enhance understanding of industrial applications.				

Course Outcomes (CO):

•

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools used	
		Level*	Category#		
CO1	Understand the basic principles and processes involved in industrial microbiology.	U	F	Quizzes, Internal Exam	
CO2	Describe the design and operation of fermenters and their role in industrial fermentation.	U	С	Assignments, Internal Exam	
CO3	Identify and apply methods for the cultivation of industrially important microorganisms.	Ар	Р	Practical Assessments	
CO4	Analyze methods for the downstream processing and purification of fermentation products.	An	Р	Internal Exam, Practical Assessments	
CO5	Evaluate the production and practical applications of microbial products in industry.	Е	С	Project Evaluation, End Semester Exam	
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

.

.

Module	Unit	Content	Hrs (45+30)	Mark s (70)
Ι	Fundamentals of Industrial Microbiology			15
	1	Introduction to Industrial Microbiology - Scope and		
		importance in various industries.		
	2	History and Evolution of Fermentation Technology - Key discoveries and advancements.		
	3	Principles of Fermentation - Overview of fermentation		
	4	Fermenter Design and Operation - Basic design features and operational parameters.		
	5	Types of Fermentation Processes I - Batch fermentation		
	6	Types of Fermentation Processes II - Continuous and fed- batch fermentation		
П	Indus	strial Microorganisms and Media	12	20
11	7	Overview of Industrially Important Microorganisms -	12	20
	/	Characteristics and selection criteria.		
	8	Isolation and Screening of Microorganisms - Techniques		
		for finding industrially valuable strains.		
	9	Improvement of Microbial Strains - Genetic manipulation and adaptive evolution.		
	10	Culture Preservation Techniques - Methods for		
	-	maintaining industrial microorganisms.		
	11	Development of Fermentation Media - Nutrient		
		requirements and media optimization.		
III	Downstream Processing			20
	12	Overview of Downstream Processing - Introduction to product recovery and purification.		
	13	Cell Disruption Methods - Mechanical and non- mechanical disruption techniques.		
	14	Primary Separation Techniques - Filtration and		
	15	Concentration and Purification Techniques I - Precipitation and dialysis		
	16	Concentration and Purification Techniques II -		
IV/	Products and Applications		10	15
1 8	17	Production of Primary Metabolites - Alcohols and organic	10	13
	18	Production of Secondary Metabolites - Antibiotics and vitamins.		
	19	Enzyme Production - Methods and applications in industry.		

•
	20	Biopolymers and Biofuels - Production techniques and industry uses.		
	21	Food and Beverage Industry Applications - Microbial roles in food production.		
	22	Recent Advances and Future Trends in Industrial Microbiology		
V	Pract	ical	30	
	1	Cell disruption techniques		
	2	Ammonium Sulfate precipitation		
	3	Dialysis		
	4	Thin Layer Chromatography		
	5	Citric acid production		
	6	Wine meduation		

- 1. Prescott, L. M., Harley, J. P., & Klein, D. A. (2002). *Microbiology* (6th ed.). McGraw-Hill Higher Education.
- 2. Crueger, W., & Crueger, A. (1990). *Biotechnology: A Textbook of Industrial Microbiology*. Sinauer Associates Inc.
- 3. Demain, A. L., & Adrio, J. L. (2008). Biotechnology of Microbial Products. Springer.
- 4. Waites, M. J., Morgan, N. L., Rockey, J. S., & Higton, G. (2001). *Industrial Microbiology: An Introduction*. Blackwell Science.
- 5. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2017). *Principles of Fermentation Technology* (3rd ed.). Butterworth-Heinemann.

СО	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	1	1			3	2	1		2	1
CO2	3	2	1	1			2	3	1	2	1	
CO3	2	3	2	1			2	3	2	1	2	1
CO4	1	2	3	2	1		1	2	3	2	1	2
CO5	1	1	2	3	2	1	1	1	2	3	2	1

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics :

СО	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark			
CO2	\checkmark	\checkmark		
CO3				\checkmark
CO4	\checkmark			\checkmark
C05			\checkmark	\checkmark

Programme	B. Sc. Microbiol	ogy						
Course Code	MBY5CJ 303							
Course Title	Basic aspects of in	mmunology	y					
Type of Course	Major							
Semester	V							
Academic Level	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per	per week	per week	Hours			
		week						
	4	4	-		60			
Pre-requisites								
Course Summary	This course pro	vides an	overview c	on immunity	, immune			
	response, differen	nt cells inv	olved in in	nmune respo	onse etc. It			
	offers a detailed description on antigen and antibody, its types							
	and functions, monoclonal antibody production, complement							
	activation types	etc. Stude	nts can ga	in an overa	ll idea on			
	immunity and imi	nunologica	l techniques	5.				

MBY5CJ 303. BASIC ASPECTS OF IMMUNOLOGY

Course Outcomes (CO):

.....

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the fundamental principles of the immune system and its components.	U	С	Internal Exam, End Semester Exam				
CO2	Analyze the types and functions of antigens and antibodies.	An	С	Assignments, Practical Assessments				
CO3	Evaluate the mechanisms of immune response and their clinical applications.	Е	Е	Assignments, End Semester Exam				
CO4	Discuss the role of MHC in immune processes and disease susceptibility.	U	С	Internal Exam, Assignments				
CO5	Apply immunological techniques in experimental and diagnostic settings.	Ap	С	Practical Assessments				
* - Re # - Fa Metao	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Detailed	Syllab	us:		
Module	Unit	Content	Hrs (48 +12)	Marks (75)
Ι	Histo	ry and scope of immunology	12	15
	1	Contributions of scientists – Edward Jenner, Karl		
		Landsteiner, Robert Koch, Paul Ehrlich, Elie		
		Metchnikoff and Rodney Porter.		
	2	Innate immunity		
	3	Acquired immunity – Active and Passive immunity		
	4	Mechanism of innate immunity – physical, chemical,		
		cellular, molecular etc		
Π	Struc	ture ,Functions and Properties of immune cells	12	15
	5	Hematopoiesis and stem cells		
	6	Cells of immune system – lymphocytes,		
		macrophage, leukocytes, mast cells, dendritic cells.		
	7	Primary lymphoid organs – Thymus and Bone		
		marrow		
	8	Secondary lymphoid organs – lymph node, spleen,		
		MALT		
III	Antig	gen and Antibody	12	20
	9	Antigen and its characteristics		
	10	Types of antigens –hapten, epitope, TD and TI		
		antigens, adjuvants		
	11	Antibodies – basic structure and properties –		
		antigenic determinants, isotype, allotype,		
		idiotype		
	12	Types and functions of antibodies – IgM.		
		IgG.IgD.IgA.IgE		
	13	Monoclonal antibodies and hybridoma		
	10	technology		
	14	Complement system – components and		
	11	activation		
	15	Pathways of complement activation aloggical		
	15	elternetive and leatin nethway		
	16	MUC Structure and Exection MUC 1 and		
	10	MHC = Structure and Function = MHC T and MHC 11 = 1		
	17	MHC 11 molecules.		
	1/	Antigen processing and presentation – cytosolic		
	-	and Endocytic pathways	4.5	•
IV	Imm	une response	12	20
	18	Primary and secondary immune response		
	19	Humoral - plasma cells and memory cells		

-

	20	Cell mediated immune response- self MHC restriction, T cell activation, co-stimulatory signals, killing mechanism by CTL and NK cells		
	21	Immunological tolerance		
	22	Immunological disorders		
V	Open	ended	12	
	1	How vaccines provide protection ?		
	2	Survey on laboratory test results involving microbial infections.		

Reference books:

- 1. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2020). *Cellular and Molecular Immunology* (10th ed.). Elsevier.
- 2. Murphy, K., Weaver, C., & Mowat, A. (2017). *Janeway's Immunobiology* (9th ed.). Garland Science.
- 3. Owen, J. A., Punt, J., & Stranford, S. A. (2019). *Kuby Immunology* (8th ed.). W.H. Freeman.
- 4. Parham, P. (2014). The Immune System (4th ed.). Garland Science.
- 5. Sompayrac, L. (2019). How the Immune System Works (6th ed.). Wiley-Blackwell.
- 6. Ritchlin, C., & Firestein, G. (Eds.). (2020). *Immunology, Inflammation and Diseases of the Human Body* (3rd ed.). Elsevier.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3	1			2	
CO2	2	3		1			2	2	3	1	3	
CO3		2	3			1		3	2	3	2	1
CO4	1			3	2		1			2	3	2
CO5			3	2	3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

-

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

Mapping of COs to Assessment Rubrics :

СО	Internal Exam	Assignment	End Semester Examination
CO1	\checkmark		\checkmark
CO2		\checkmark	
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO1	\checkmark		\checkmark

MBY6CJ 304/ MBY8MN304. FOOD AND DAIRY MICROBIOLOGY

Programme	B. Sc. Mi	B. Sc. Microbiology							
Course Code	MBY6CJ	MBY6CJ 304/ MBY8MN304							
Course Title	Food and	Dairy Microbiology							
Type of Course	Major/Mi	nor							
Semester	VI								
Academic Level	300 - 399								
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours				
			per week	per week					
	4	3	-	2	75				
Pre-requisites	Nil								
Course Summary	This cour	se examines the micr	obiological	aspects of fo	od processing,				
	storage, a	nd safety, including t	he study of r	nicroorganis	ms that impact				
	food spoilage and preservation. The course explores both detrimental								
	and bene	ficial aspects of mic	roorganisms	in food sys	stems, with an				
	emphasis	on dairy products.							

Course Outcomes (CO): .

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Understand the types and sources of microbial contamination in foods.	U	С	Internal Exam, End Semester Exam			
CO2	Describe the microbiology of milk and dairy products and their spoilage agents.	U	С	Internal Exam, End Semester Exam			
CO3	Analyze the principles of food spoilage and preservation.	An	С	Internal Exam, End Semester Exam			
CO4	Evaluate the pathogenesis of foodborne diseases and their control measures.	Ε	С	Internal Exam, End Semester Exam			
CO5	Apply microbiological techniques in the production and safety assessment of food products.	Ар	Р	Internal Exam, End Semester Exam			
* - Re # - Fa Metae	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(45+30)	(70)
Ι	Types	s of microorganisms in Food	10	15
	1	Source of contamination		
	2	Factors influencing microbial growth in foods		
		(extrinsic and intrinsic)		

	3	Microbial examination of food- viable colony count		
	4	Examination of fecal Streptococci		
	5	Spoilage microorganisms in various foods		
Π	Dairy	y Microbiology	10	15
	6	Physical and chemical properties of milk		
	7	Milk as a substrate for microorganisms		
	8	Types of microorganisms in Milk: bacteria, fungi, and		
		yeast		
	9	Sources of microbial contamination of milk		
	10	Microbiological analysis of milk		
III	Food	l Spoilage and Food preservation	15	25
	11	General principles underlying spoilage		
	12	Different kinds of foods, cereals and cereal products -		
		sugar and sugar products - vegetable and fruits - meat		
		and meat products - fish and other sea foods - eggs and		
		poultry		
	13	Dairy and fermentative products (ice		
		cream/milk/bread/wine)		
	14	Food preservation : Principles of food preservation		-
	15	Methods of preservation. a. Physical (irradiation,		
		drying, heat processing, pasteurization, chilling and		
		freezing, high pressure and modification of		
	16	atmosphere)		
	10	Niethods of preservation b. Chemical (Sodium		
IV/	Faar	Delizoate Class I & II)	10	15
1 V	F 000	Food horma infactions	10	15
	17	Postorial: Staphylococcal Prucella Pacillus		
	10	Clostridium Escherichia Salmonella		
	19	Fungal : Mycotoxins including aflatoxins ergotism		-
	20	Viral: Henatitis		+
	20	Protozoa - Amoebiasis		
	22	Emerging food safety issues		
V	Pract	tical (Production of Fermented Food products)	30	
,	1	Cheese, bread, yoghurt, idli, Ice cream	20	†
	2	Fermented pickles and fermented vegetables		1
	3	SCP, Wine production		†
	4	Probiotics and prebiotics		

•

- 1. Frazier, W. C., & Westhoff, D. C. (2013). *Food Microbiology* (4th ed.). McGraw-Hill Education.
- 2. Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). *Modern Food Microbiology* (7th ed.). Springer.

- 3. Doyle, M. P., & Buchanan, R. L. (2013). *Food Microbiology: Fundamentals and Frontiers* (4th ed.). ASM Press.
- 4. Robinson, R. K., Batt, C. A., & Patel, P. D. (2015). *Encyclopedia of Food Microbiology* (2nd ed.). Academic Press.

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3					2	3	1		3	
CO 2	3		2		1		3		2		2	
CO 3		2	3			1		3	3	2	2	1
CO 4		3		3				3		3		2
CO 5			3		3							

Mapping of COs with PSOs and POs :

÷

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Practical Exam	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark

MBY6CJ 305. MICROBIAL BIOTECHNOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY6CJ 305	MBY6CJ 305					
Course Title	Microbial Biotechnol	ogy					
Type of Course	Major						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	60		
Pre-requisites	Nil						
Course	This course outlines the	he scope of N	licrobial Bio	technology wi	ith respect to		
Summary	different products and	l processes e	mploying mi	croorganisms	. The course		
	discusses different bio	discusses different biotechnological approaches using microorganisms in					
	solving existing chall	lenges as we	ll as in nove	l product dev	elopment to		
	address the evolving	scenario.					

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation			
		Level*	Category#	Tools used			
CO1	Understand the applications of microorganisms in biotechnological processes and product development.	U	С	Internal Exam, Assignments			
CO2	Explore the role of microbial biotechnology in environmental remediation and pollution control.	An	С	Internal Exam, Practical Assessments			
CO3	Analyze the techniques and methods used in microbial enhancement for biofuel production.	Ар	С	Internal Exam, Practical Assessments			
CO4	Evaluate the ethical, safety, and regulatory challenges associated with microbial biotechnology.	Е	С	Internal Exam, Assignments			
CO5	Apply biotechnological innovations to develop solutions for industry-specific challenges, particularly in energy and environmental sectors.	С	Р	Practical Assessments, End Semester Exam			
* - Re # - Fa Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

.

Module	Unit	Content	Hrs (55+30)	Marks (70)
Ι	Scope	e of microbial biotechnology	12	10
	1	Microbial cells as single cell proteins		
	2	Spirulina-process and safety aspects		
	3	Mushroom production: cultivation of edible and		
		medicinal mushrooms		
	4	Probiotics and prebiotics- importance, production and		
		applications		
	5	Microbial synthesis of exopolysaccharides, biopolymers,		
		bioplastics, pigments, nanoparticles and their		
		applications		
	6	Biomineralization by microorganisms and applications.		
II	Petro	leum microbiology	12	20
	7	Microbial enhanced oil recovery		
	8	oil spill degradation by microorganisms-mechanism and		
		microorganisms involved		
	9	Superbug in oil spill removal		
	10	Microbes in alternative energy- Microbial production of		
		fuels- H_2 and ethanol		
	11	Production of biodiesel-oleogenic yeasts and algae.		
	12	Microbial bioelectrochemical systems (BESs).		
III	Micro	obial interactions with pollutants	12	20
	13	Bioremediation- process and organisms involved, constraints and applications.		
	14	Bioaugmentation; Ex-situ and in-situ processes		
	15	Intrinsic and engineered bioremediation		
	16	Bioremediation of dyes- microorganisms involved		
	17	Bioremediation in paper and pulp industries-		
		microorganisms involved		
	18	Microbe-metal interactions- bioaccumulation,		
** *	3.54	biosorption- mechanisms		• • •
IV	Micro	bial biotechnology: applications in novel product	12	20
	devel	opment		
	19	Genetically Modified Organisms, GMO's		
	20	biolech producis and impact assessment-Bt (cotton,		
	21	Insulin and therapeutics production using GMO		
	$\frac{21}{22}$	Rioweanons and Rioshields		
V	22 Pract	ical	30	
¥	1	Cultivate and harvest single-cell proteins using vesst or	50	
		aloae		
	<u> </u>			

•

2	Grow edible or medicinal mushrooms like Agaricus	
	bisporus or Ganoderma lucidum on suitable substrates.	
3	Ferment dairy or non-dairy substrates with probiotic	
	strains (e.g., Lactobacillus) and test for prebiotic efficacy.	
4	Produce and isolate exopolysaccharides or bioplastics	
	using bacterial cultures such as Xanthomonas campestris.	
5	Test the degradation of oil spills using oil-degrading	
	bacteria such as Pseudomonas aeruginosa.	
6	Extract lipids for biodiesel production.	
7	Conduct experiments on bioaccumulation and biosorption	
	of heavy metals using microorganisms like	
	Saccharomyces cerevisiae.	
8	Use microbial cultures to degrade industrial dyes and	
	assess the efficiency of degradation.	

- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). *Brock biology of microorganisms* (16th ed.). Pearson.
- Atlas, R. M. (1997). Principles of microbiology (2nd ed.). Wm. C. Brown Publishers.
- Black, J. G., & Black, L. J. (2018). *Microbiology: Principles and explorations* (10th ed.). Wiley.
- Salle, A. J. (2007). *Fundamental principles of bacteriology* (Reprint of the 2nd ed., 6th impression 1943). Envins Press.
- Tortora, G. J., Funke, B. R., & Case, C. L. (2019). *Microbiology: An introduction* (13th ed.). Pearson.

CO	PSO 1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	
CO2	1	3	2				2	3	2	1	3	
CO3	2	1	3				1	2	3	2	2	1
CO4		2		3	1			3		3	1	2
CO5	1			2	3		1	2	1	2	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics:

СО	Internal Exam	Assignments	Practical Assessments	End Semester Exam
CO1	\checkmark	\checkmark	\checkmark	
CO2	\checkmark		\checkmark	
CO3	\checkmark		\checkmark	
CO4	\checkmark	\checkmark		
CO5		\checkmark	\checkmark	\checkmark

•

MBY6CJ306-PRINCIPLES OF GENETICS

Programme	B. Sc. Microbiology					
Course Code	MBY6CJ306/MBY81	MN306				
Course Title	Principles of Genetics	S				
Type of Course	Major/Minor					
Semester	VI					
Academic Level	300-399					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Nil					
Course	This course explores	the historic	al foundatior	ns and basic p	principles of	
Summary	genetics, from Mend	el's laws to t	the chromoso	me theory of	inheritance.	
	Students delve into	mechanism	s like sex o	determination	, sex-linked	
	inheritance, and com	inheritance, and complex patterns such as epistasis and pleiotropy. It				
	covers cellular processes like mitosis and meiosis, and introduces					
	bacterial genetics, er	nphasizing i	ts role in gen	ne mapping a	and bacterial	
	evolution.					

Course Outcomes (CO):

-

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Describe the historical perspectives on the study of genetics and its evolution.	R	F	Quiz, Internal Exam			
CO2	Explain the basic terminology and principles of inheritance, including deviations from Mendelian concepts.	U	С	Class Tests, Internal Exam			
CO3	Apply pedigree analysis techniques to trace patterns of inheritance within families and populations.	Ар	Р	Case Study Evaluation, Internal Exam			
CO4	Investigate the mechanisms of mitosis and meiosis, including their significance and regulation.	E	С	Assignments, Internal Exam			
CO5	Analyze the processes of linkage, crossing over, and recombination frequency.	An	С	Problem Solving Tests, Internal Exam			
CO6	Discuss bacterial genetics, including mechanisms of conjugation, transformation, and transduction.	An	С	Assignments, Internal Exam			
* - Re # - Fa Metao	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

÷

.

Detailed Syllabus:

-

Module	Unit	Content	Hrs	Marks
			(48+12)	(70)
Ι	Basic	concepts in genetics	10	15
	1	Historical perspectives and basic terminology on the	1	
		study of genetics.		
	2	Mendalian theories of inheritance: Concept of alleles,	7	
		crossing, test cross, back cross, mendalian experiments-		
		monohybrid and dihybrid crosses. Unit factor concept,		
		law of dominance/recessiveness, law of segregation, law		
		of independent assortment		
	3	Sex determination in genetics	1	
	4	Sex-linked inheritance	1	
II	Exten	sions of Mendlalian genetics	10	15
	5	Incomplete dominance and codominance in genetics.	1	
	6	Multiple alleles and Lethal alleles: implications	1	
	7	Epistatsis, pleiotropy: role in gene interaction	1	
	8	Environmental effects on phenotypic expression.	1	
	9	Extra chromosomal inheritance:mitochondria/chloroplast	3	
	10	Pedigree analysis: tracing inheritance patterns.	3	
III	Cell c	ycle and regulation	18	25
	11	Mitosis: process and significance.	2	
	12	Meiosis: stages and significance.	4	
	13	Cell cycle checkpoints and their importance.	3	
	14	Recombination: molecular mechanism and significance in	3	
		genetic variation		
	15	Linkage and crossing over: cytological basis and molecular	3	
		mechanisms		
	16	Recombination frequency as a measure of gene distance	2	
		and gene order: two factor and three factor crosses		
	17	Interference and coincidence	1	
IV	Bacte	rial Genetics	10	15
	18	Conjugation: mechanism and types	2	
	19	Transformation: mechanism and types	2	
	20	Transduction: mechanism and types	2	
	21	Interrupted mating for gene mapping	2	
	22	Gene mapping using transformation and transduction	2	
V	Open	ended module	12	
		Population Genetics/Case studies/Surveys on Genetic inheritance		

- 1. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 2. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company
- 3. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 4. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J., 1995. Scientific American Books.
- 7. Biochemistry by Stryer L., 1995. W.H. Freeman and company.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S. Old and S.B.Primrose. 1989.Blackwell Scientific Publications, London.
- 10. Alcamo IE. (2001). DNA Technology: The Awesome Skill. 2nd edition. Elsevier Academic Press,
- 11. Brown TA. (2006). Gene Cloning and DNA Analysis. 5th edition. Blackwell Publishing, Oxford,
- 12. Glick BR and Pasternak JJ. (2003). Molecular Biotechnology. 3rd edition. ASM PressWashington D.C.
- 13. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7thedition. Blackwell Publishing, Oxford, U.K.
- 14. Sambrook J, Fritsch EF and Maniatis T. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.

СО	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3		1		2	
CO2	2						2		2		3	
CO3	3		3				3		3	3	2	
CO4		3		3				3		3		3
CO5			3						3		3	
CO6	2											

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

-

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

Mapping of COs to Assessment Rubrics:

CO	Internal Exam	Assignmen t	Quiz	End Semester Examination
CO1	\checkmark		\checkmark	\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6	\checkmark	\checkmark		\checkmark

MBY7CJ 401. BIOPHYSICS AND INSTRUMENTATION

Programme	B. Sc. Microbiology				
Course Code	MBY7CJ 401				
Course Title	Biophysics and Instru	imentation			
Type of Course	Major				
Semester	VII				
Academic Level	400 - 499				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Nil				
Course	This course introduce	s students to	the principles	s of biophysics	s and various
Summary	instrumental technic	ques used	in biologi	cal research	, including
	microscopy, spectros	scopy, chron	natography,	and more. It	covers the
	structural aspects of	molecules,	techniques	for analyzing	g biological
	materials, and the app	olication of th	nese techniqu	es in real-wor	ld scenarios

Course Outcomes (CO):

•

CO	CO Statement	Cognitiv	Knowledge	Evaluation			
		e Level*	Category#	Tools used			
CO1	Understand the principles and applications of biophysical techniques.	U	С	Internal Exam, End Semester Exam			
CO2	Describe the theoretical basis and functionality of key biophysical instruments.	U	С	Assignments, End Semester Exam			
CO3	Analyze the role of biophysical methods in studying molecular structure and interactions.	An	С	Assignments, End Semester Exam			
CO4	Evaluate the impact of biophysical techniques on advancements in biological research.	Е	С	Internal Exam, End Semester Exam			
CO5	Understand the concepts of spectroscopy, chromatography, and electrophoresis as used in biophysical studies.	Ар	Р	Practical Assessment, End Semester Exam			
* - Re # - Fa Metao	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

.

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(45 +30)	(70)
Ι	Intro	luction to Structure of atoms and molecules	10	15
	1	Structure of atoms and molecules		
	2	Physico-chemical forces,. Laws of thermodynamics		
	3	DNA-Protein interactions Lambda repressor and cro		
		binding to DNA		
	4	Interactions of transcription factors-HLH, bHLH,		
		Leucine Zipper, Cys-His, Zinc fingers. Histone-DNA		
		interaction, RNA protein interactions, DNA-drug		
		Interaction		
	5	Ramachandran plot - alpha, beta, alpha - beta domains		
	6	Structural implications of peptide bond, protein families,		
		Protein-drug interaction.		
II	Micro	scopy, Spectrosopy, spectrophotometry, XRD	10	15
	7	Principle, Instrument Design, methods and Applications		
		of Microscopy: Light, Scanning and Transmission		
		electron, phase contrast, polarization, confocal and		
		interference microscopy, CCD camera, Introduction to		
		Atomic force microscopy.		
	8	Beer-Lambert's law, Principle, Instrument Design,		
		methods and Applications of UV-Visible spectra		
	9	IR spectra, Raman Spectra, Fluorescence spectra, NMR		
	10	and ESR spectra.		
	10	Colorimetry, spectrophotometry, Fluorimetry, Flame		
		photometry and Spectroscopy. A Ray diffraction		
	Charac	technique-principle and application.	15	20
111		natography, Centrifugation, Electrophoresis	15	20
	11	Principle, instrument Design, methods and Applications		
		of Chromatography, ion exchange, molecular sieve,		
		LIDTLC EDLC CC MS LC MS		
	10	Centrifucation Driveinle and emplication of versions		
	12	tunes of contribution		
	12	Electrophonogia ACE DACE SDS & Native DACE		
	15	Capillary Electrophoresis isoclectric focusing 2D		
		Capitaly Electrophoresis, isoelectric focusing, 2D		
	14	Dontido mass fingerprinting using MALDI TOF		
	14	MASCOT database		
	15	NIASUUI ualabase. Diagongorg ata attanding workshang or trainings or		
	13	biosensors, etc, auending workshops or trainings on		
		msu umentation, etc		

IV	pH m Refra	eter, Dialysis, Sonication, Lyophilization. ctometry, Cytometry and Flow cytometry, Radioactive	10	20			
	isotop	es					
	17	pH meter- principle, types and applications.					
	18	Dialysis-principle and applications.					
	19 Principle, methods and Applications of Ultra filtration,						
	20	Sonication, Lyophilization. Refractometry,					
	21	Cytometry and Flow cytometry					
	22	Introduction to Radioactive isotopes, autoradiography,					
		radiation dosimetry- GM counter, Liquid scintillation					
		counting, safety aspects.					
V	Pract	icals	30				
	23	Gel filtration chromatography					
	24	Dialysis of proteins					
	25	Paper chromatography					
	26	TLC					
	27	Column separation of plant pigments					
	28	Fractionation of egg protein and its identification					
	29	Polyacrylamide Gel Electrophoresis					
	30	Agarose gel electrophoresis					

- 1. Keith Wilson and John Walker. Practical Biochemistry- principles and techniques; Cambridge University press, London, UK. 2.
- 2. David T Plummer, Tata McGraw- Hill publishing company limited; McGrqw office, New Delhi
- 3. C.R. Kothari, 2 nd Edition,2004. Research methodology- methods and techniques. New Age International (P) limited publishers, New Delhi.
- 4. Instrumental methods of chemical analysis P.K. Sharma
- 5. Biophysical chemistry Upadhyay., Upadhyay and Nath 6. A Biologist's guide to principle and techniques of practical biochemistry Brigan L. Williams.
- 6. Handbook of Biomedical Instrumentation R.S. Khandpur, Tata McGraw Hill

Mapping of COs with PSOs and POs:

CO	PS O1	PSO 2	PSO 2	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
	01	Z	3		3							
CO1	3		2		1		3		1		2	
CO2	2	3		1			2	2	3	1	3	
CO3		2	3			1		3	2	3	2	1
CO4		3		3				3		3		2
CO5	1		3		2		1		2		3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

Mapping of COs to Assessment Rubrics:

CO	Internal Exam	Assignmen t	End Semester Examination	Practical Assessment
CO1	\checkmark		\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3		\checkmark	\checkmark	
CO4	\checkmark		\checkmark	\checkmark
CO5			\checkmark	\checkmark

MBY7CJ 402. ADVANCED IMMUNOLOGY AND CANCER BIOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY7CJ 402					
Course Title	Advanced Immunolo	gy and Cance	er Biology			
Type of Course	Major					
Semester	VII					
Academic Level	400-499					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3		2	75	
Pre-requisites	Nil					
Course	This course explores	advanced to	pics in immu	nology and th	ne molecular	
Summary	biology of cancer. It covers immune response mechanisms, the role of					
	immunity in cancer, genetic and molecular bases of cancer, and					
	contemporary strateg	ies for cancer	r treatment ar	nd immunothe	erapy.	

Course Outcomes (CO):

i,

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
	Understand the classification and			Internal Exam, End
CO1	impact of various	U	С	Semester Exam,
	immunodeficiency disorders.			Practical Assessment
	Analyze the pathophysiology and			Assignments, End
CO2	management strategies for major	An	С	Semester Exam,
	immunodeficiency diseases.			Practical Assessment
	Explore the mechanisms and			Assignments End
CO3	implications of	٨n	С	Semester Evam
005	immunodeficiency in HIV	All	C	Practical Assessment
	infection and its management.			Tractical Assessment
	Evaluate the concepts and			Internal Exam End
COA	clinical applications of	٨n	C	Semester Exam
0.04	hypersensitivity reactions and	All	C	Practical Assessment
	transplantation immunology.			Tractical Assessment
	Examine the pathogenesis,			
	diagnosis, and therapeutic			Assignments, End
CO5	strategies in autoimmune	Е	С	Semester Exam,
	disorders and tumor			Practical Assessment
	immunology.			
* - Re	emember (R), Understand (U), Appl	y (Ap), Analy	vse (An), Evalu	ate (E), Create (C)
# - Fa	ctual Knowledge(F) Conceptual Kn	owledge (C)	Procedural Kno	owledge (P)
Metao	cognitive Knowledge (M)			

Detaile	d Sylla	bus:		
Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Immu	inodeficiency Disorders	10	15
	1	Classification of immunodeficiency disorders (Primary,	1	
		Secondary, Humoral, Cell Mediated etc)		
	2	Major immunodeficiency diseases, SCID, Complement	3	
		deficiencies		
	3	Causes and management of immunodeficiency diseases	2	
	4	Animal models of immune deficiencies	2	
	5	Mechanism of immunodeficiency in HIV infection	2	
II	Нуре	rsensitivity and Transplantation Immunology	10	15
	6	Introduction and Classification of Hypersensitivity	2	
	7	Mechanism, Clinical presentation, Diagnosis and	2	
		Treatment of Type I, II, and III reactions		
	8	Delayed Type Hypersensitivity : Tuberculin, Dermatitis,	4	
		Granulomatous types etc		
	9	Transplantation immunology : Classification of grafts	2	
		and transplantation. Immunology of graft rejections		
	10	MHC and Histocompatibility testing, Immunotherapy of		
		transplantation		
III	Autoi	mmune Diseases	15	25
	11	Introduction - Central tolerance, Peripheral tolerance,	2	
	12	Organ charific and systemic systemum disorders	2	
	12	organ specific and systemic autominute disorders-	2	
		diseases		
	13	Mechanisms of autoimmunity	3	
	13	Diagnosis of autoimmunity:	2	
	11	their detection	2	
	15	Management of autoimmune diseases	2	-
IV	Imm	inology of Malignancy	10	15
	16	Tumour and immunity	2	
	17	Characteristics of tumour cells. Tumour antigens and	3	
	_ /	tumor suppressor genes	-	
	18	Mechanism of tumour development	1	
	19	Immunity to tumour and immune surveillance theory	1	
	20	Immunotherapy to tumour	1	
V	Pract	ical	30	30
	1	Blood grouping	-	-
	2	ELISA		1
	3	RPR		1
	4	WIDAL		

•

5	RA test	
6	Western blotting	
7	Immuno Electrophoresis	
8	Immuno diffusion tests	
9	Latex Agglutination reaction	
10	Precipitin assay	

- 1. Kuby Immunology by Judy Owen, Jenni Punt, and Sharon Stranford
- 2. Janeway's Immunobiology by Kenneth Murphy, Casey Weaver, and Allan Mowat
- 3. Basic Immunology: Functions and Disorders of the Immune System by Abul K. Abbas, Andrew H. Lichtman, and Shiv Pillai
- 4. Immunology by David Male
- 5. Roitt's Essential Immunology by Peter J. Delves, Seamus J. Martin, Dennis R. Burton, and Ivan M. Roitt
- 6. Principles of Cancer Immunotherapy by Nils Lonberg
- 7. Cancer Immunotherapy Principles and Practice by Lisa H. Butterfield and Howard L. Kaufman
- 8. Ananthanarayan and Paniker's Textbook of Microbiology by Ananthanarayan, R., and Paniker, C. K. J.

СО	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	
CO2	2	3	1				2	3	2	1	3	
CO3	1	2	3				1		3	2	2	1
CO4		3	2	1				3	2	3	1	2
CO5	1		2	3			1	2	3	2	3	1

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics:

СО	Internal Exam	Assignments	End Semester Exam	Practical Assessment
CO1	\checkmark		\checkmark	\checkmark
CO2		\checkmark	\checkmark	\checkmark
CO3		\checkmark	\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark
CO5		\checkmark	\checkmark	\checkmark

•

MBY7CJ 403. MICROBIAL BIOCHEMISTRY

Progr	amme	B. Sc. Microbiology						
Cours	se Code	MBY7CJ 403						
Cours	se Title	Microbial Biochemistr	ry					
Туре	of Course	Major						
Seme	ster	VII						
Acade	emic Level	400-499						
Cours	se Details	Credit	Lecture	Tut	torial	Pract	ical	Total
			per week	per	week	per w	reek	Hours
		4	3			2		75
Pre-re	equisites	Nil						
Course Summary The Microbial Biochemistry course for undergraduate programs offer comprehensive exploration of essential biochemical principles with focus on microbial systems. The course begins with an in-dep examination of biomolecules such as carbohydrates, proteins, lipi hormones, and vitamins, covering their structures, functio classifications and metabolism. A detailed study of enzymes involved microbial metabolism is also envisaged. Laboratory sessions provi hands-on experience to gain practical skills in biochemical analysis a data interpretation, reinforcing theoretical concepts learned in lectures							ams offers a ples with a an in-depth eins, lipids, functions, involved in ons provide analysis and n lectures.	
Cours	e Outcomes	s (CO):						
CO		CO Statement	Cogni	tive	Know	ledge	Evalı	uation Tools
			Leve	1*	Categ	ory#		used
CO1	Understand structures microbes.	d the diverse roles a of biomolecules	ind in U		С		Intern End S Exam	al Exam, emester
CO2	Analyze n their regula	netabolic pathways a ation in microbial syster	nd An		С		Assig Practi Asses	nments, cal sments
CO3	Evaluate the mechanism and disease	E		Р		Assig Seme	nments, End ster Exam	
CO4	Discuss ad microbial e control.	c U		С		Intern Assig	al Exam, nments	
CO5	Apply biochemical analysis techniques in practical microbial research.ApPPractical Assessments							cal sments
* - Re # - Fa	emember (R actual Know), Understand (U), App ledge(F) Conceptual K1	ly (Ap), Ana nowledge (C	alyse (2) Pro	(An), Ev cedural	valuate Knowle	(E), C edge (I	reate (C) P)

Metacognitive Knowledge (M)

Detailed Syllabus:

÷.

Module	Unit	Content	Hrs (45+30)	Marks
T	The	Niversity of Colls and Diamologulos	<u>(45750)</u> 10	15
1	1 ne L	Structure and function of carbohydrotes:	10	15
	1	Monospecharidas Dispecharidas and Polyspecharidas		
	2	Honosaccharides, Disaccharides, and Polysaccharides		
	2	Glycoproteins		
	3	Structure, properties, and functions of amino acids and		
		proteins		
	4	Lipid structure, properties, classification, and functions		
	5	Fatty acid classifications: Saturated, unsaturated, PUFA,		
		short, medium, and long-chain fatty acids		
	6	Phospholipids, Sphingolipids, prostaglandins,		
		prostacyclins, and leukotrienes		
	7	Hormones and vitamins: Structure and functions		
II	Carbo	ohydrate and Lipid Metabolism	15	25
	8	Overview of carbohydrate metabolism: Respiration and		
		fermentation		
	9	Glycolysis: Aerobic and anaerobic types		
	10	Pyruvate dehydrogenase complex; Krebs cycle;		
		Glyoxylate cycle		
	11	Phosphorylation: Substrate level and oxidative		
		phosphorylation		
	12	Electron transport chain and ATP formation		
	13	Gluconeogenesis, Glycogenesis, and Glycogenolysis		
	14	Fatty acid oxidation (alpha, beta, omega)		
	15	Synthesis of unsaturated and long-chain fatty acids		
III	Amin	o Acid and Nucleic Acid Metabolism	10	15
	16	Amino acid metabolism: Transamination, deamination,		
		transmethylation		-
	17	Microbial metabolism of glycine, phenylalanine, and		
	10	lysine		
	18	Biosynthesis and degradation of purines and		
11.7	Б	pyrimidines	10	1.5
IV	Enzyi	mology and Peptidoglycan Biosynthesis	10	15
	19	Enzyme–IUB-Nomenclature, classification, active sites,		
	20	coenzymes, and coractors		
	20	Monton equation)		
	21	Multi subunit anzumas isazumas allastaria anzumas		+
	21	Pontidoglycon hiosynthesis		+
X 7	LL Dragt	repudogrycan biosynthesis	20	20
V	Fract	icais	30	30

1	Preparation of Buffers	
2	Protein Estimation using Lowry's Method	
3	Estimation of Reducing Sugars by DNS Method	
4	Spectrophotometric Assay of Enzyme Activity	
5	Estimation of Glucose by ortho toluidine method	
6	Estimation of fructose by Roe – Pappadopoulos Method	
7	Qualitative identification of carbohydrates in mixtures	
	containing mono, di and polysaccharides starch,	
	dextrin, sucrose, maltose, lactose, glucose, fructose,	
	xylose and galactose.	
8	Estimation of amino acid, methionine by nitroprusside	
	method.	
9	Protein estimation by Bradford's method.	
10	Estimation of citric acid	
11	Estimation of ascorbic acid in plant matter	
12	Estimation of DNA and RNA	

i.

- 1. Berg, J. M., Tymoczko, J. L., Gatto, G. J., & Stryer, L. (2015). *Biochemistry* (8th ed.). W. H. Freeman.
- 2. Voet, D., Voet, J. G., & Pratt, C. W. (2016). *Fundamentals of Biochemistry: Life at the Molecular Level* (5th ed.). Wiley.
- 3. Nelson, D. L., & Cox, M. M. (2017). *Lehninger Principles of Biochemistry* (7th ed.). W. H. Freeman.
- 4. White, D., Drummond, J., & Fuqua, C. (2020). *The Physiology and Biochemistry of Prokaryotes* (5th ed.). Oxford University Press.
- 5. Garrett, R. H., & Grisham, C. M. (2016). Biochemistry (6th ed.). Cengage Learning.

	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3				2		3				2	
CO2	2	3					2	2	3	1	3	
CO3		2	3			1		3	2	3	2	1
CO4	1			3	2		1			2	3	2
CO5			3		3					3	3	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar •
- Continuous Assessment (10%)
 Practical Assessment (20%)
- Endsemester Exam (70%) •

Mapping of COs to Assessment Rubrics :

CO	Internal Exam	Assignmen t	End Semester Examination	Practical Assessment
CO1	\checkmark		\checkmark	
CO2		\checkmark	\checkmark	\checkmark
CO3		\checkmark	\checkmark	
CO4	\checkmark	\checkmark		
CO5				\checkmark

MBY7CJ 404. MYCOLOGY AND PARASITOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY7CJ 404								
Course Title	Mycology and Parasi	Mycology and Parasitology							
Type of Course	Major								
Semester	VII								
Academic Level	400-499								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites									
Course Summary	This course provides an in-depth study of fungi and protozoa, focusing on their general characteristics, classification, and the diseases they cause. It also covers different fungal and protozoan diseases, their								
	treatment, and the dr	ugs used aga	amst mem.						

Course Outcomes (CO):

-

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand the basic features and classification of fungi and protozoa.	U	С	Internal Exam, End Semester Exam					
CO2	Analyze the pathogenesis and epidemiology of fungal and protozoan diseases.	An	С	Assignments, Midterm Exam					
CO3	Evaluate the mechanisms of action of antifungal and antiprotozoal agents.	E	Р	Assignments, Practical Assessments					
CO4	Discuss the diagnostic techniques for fungal and protozoan infections.	U	Р	Internal Exam, Practical Assessments					
CO5	Apply laboratory methods for identifying and treating fungal and protozoan diseases.	Ар	Р	Practical Assessments					
* - Re # - Fac Metac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Detailed Syllabus:

-

Module	Unit	Content	Hrs	Marks
	ELINIC		(45+30)	(70)
	FUNC	JI Classific fortune of formation	/	15
1	1	Characteristic realures of fungus	2	
1	2	Classification of fungus based on morphology	2	
	3	Classification of fungus based on reproduction	2	
TT	4	Cultivation of fungus	1	1.7
11	Funga		12	15
	5	Superficial infections- Piedra and Pityriasis	2	
	6	Cutaneous infections- Dermatophytosis	2	
	7	Subcutaneous infections - Mycetoma	2	
	8	Deep mycoses- Histoplasmosis	2	
	9	Oppurtunistic infections - Candidiasis	2	
	10	Antifungal agents - types	1	
	11	Mode of action of antifungal agents	1	
III	Protoz	zoa	17	25
	12	Characteristics features of protozoa	2	
	13	Classification of protozoa	2	
	14	Entamoeba histolytica - morphology, life cycle,	3	
		pathogenesis and epidemiology		
	15	Giardia lamblia - morphology, life cycle,	2	
		pathogenesis and epidemiology		
	16	Trypanosoma brucei - morphology, life cycle,	2	
		pathogenesis and epidemiology		
	17	Plasmodium - morphoplogy, life cycle,	4	
		pathogenesis and epidemiology		
	18	Antiprotozoal agents - types and mode of action	2	
IV	Helm	inth infections	9	15
	19	Tapeworm - Taenia solium and Taenia saginata	3	
	20	Hookworm - Ancylostoma duodenale	2	
	21	Roundworm - Ascaris lumbricoides	2	
	22	Filariasis - Wuchereria bancrofti	2	
V	Practi	cal Applications in mycology and parasitology	30	
	1	Laboratory diagnosis of fungal infections		
	2	Laboratory diagnosis of parasitic infections-stool or		
		any other sample may be used		
	3	Antifungal sensitivity tests		

- 1. Deacon, J. W. (2013). Fungal Biology (4th ed.). Wiley-Blackwell.
- 2. Roberts, L. S., Janovy, J., & Nadler, S. (2013). *Foundations of Parasitology* (9th ed.). McGraw-Hill Education.
- 3. Cox, F. E. G. (2010). *Modern Parasitology: A Textbook of Parasitology* (2nd ed.). Wiley-Blackwell.
- 4. White, D., & Fenner, F. (2014). *Medical Mycology: A Practical Approach* (2nd ed.). CRC Press.
- 5. Murphy, K., Weaver, C. (2016). *Janeway's Immunobiology* (9th ed.). Garland Science.

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2		1			3	2	1		2	
CO2	2	3				1	2	3	2	1	3	
CO3	1		3		2		1		3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

Mapping of COs to Assessment Rubrics :

CO	Internal Exam	nternal Assignment		Practical Assessment
CO1	\checkmark		\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark			\checkmark
CO5	\checkmark			\checkmark

MBY7CJ 405. ANTIMICROBIALS AND DRUG RESISTANCE

eProgramme	B. Sc. Microbiology					
Course Code	MBY7CJ 405					
Course Title	Antimicrobials and D	rug resistanc	e			
Type of Course	Major					
Semester	VII					
Academic Level	400-499					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Nil					
Course	This course provides	s an in-deptl	n exploration	of antimicro	obial agents,	
Summary	their mechanisms of action, clinical applications, and the emergence and					
	spread of antimicrobial resistance. Topics include the principles of					
	antimicrobial therapy, mechanisms of drug resistance in bacteria,					
	strategies for combating antimicrobial resistance, and the impact of					
	antimicrobial resistan	ice on public	health.			

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	To classify the different classes of antibacterial agents	(U)	(P)	Internal Exam, Assignment, End Semester Examination			
CO2	To understand the mechanisms of action of antimicrobial agents and their clinical applications	(Ap)	(P)	Internal Exam, Assignment, End Semester Examination			
CO3	To explore the molecular mechanisms underlying antimicrobial resistance in bacteria	(Ap)	(P)	Internal Exam, End Semester Examination			
CO4	To analyze the factors contributing to the emergence and spread of antimicrobial resistance.	(An)	(P)	Internal Exam, End Semester Examination			
CO5	To perform the antimicrobial assays	(Ap)	(C)	Practical Assessment			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

University of Calicut

B.Sc. Microbiology Honours

Detailed Syllabus:

Modul	Unit	Content		Marks
e			(45+30)	(70)
Ι	Antib	acterial agents	10	15
	1	Overview of antibiotics		
	2	Principles of antimicrobial therapy: spectrum of activity,		
		pharmacokinetics, pharmacodynamics		
	3	Different classes of antibiotics- Cell wall inhibitors		
	4	Different classes of antibiotics- Membrane inhibitors		
	5	Different classes of antibiotics- Protein synthesis		
		inhibitors		
	6	Different classes of antibiotics- DNA and RNA synthesis		
		inhibitors		
II	Antiv	iral, antifungal and antiparasitic agents	10	15
	7	Different classes of antiviral agents		
	8	Different classes of antifungal agents		
	9	Different classes of antiparasitic agents		
III	Antib	iotic resistance	15	25
	10	Genetic mechanisms of antimicrobial resistance:		
		mutation, horizontal gene transfer, gene amplification		
	11	Antimicrobial susceptibility testing		
	12	Mechanisms of drug resistance in bacteria-enzymatic		
		degradation of the drugs		
	13	Mechanisms of drug resistance in bacteria-Alteration of		
		the targets		
	14	Mechanisms of antibiotic resistance- changes in		
		membrane permeability		
	15	Mechanisms of antibiotic resistance-efflux pumps and		
		others		
IV	Facto	rs Contributing to Antimicrobial Resistance and	10	15
		gles to compat		
	10	Antibiotic misuse and overuse in numan and veterinary		
	17	Lise of antimicrophials in agriculture and animal		
	1/	bushondery		
	10	Negacomial infactions and healthcare associated		
	10	nosocolliar infections and heatincare-associated		
	10	Globalization traval and the spread of antimicrobial		
	19	resistant nathogons		
	20	Antimicrohial stewardship programs in healthcare		
	20	settings		
	21	Development of new antimicrobial agants and alternativa		
	<i>L</i> 1	therapies		
	22	Education training and nublic awareness campaigns on		
		antimicrobial resistance		
	L			

University of Calicut

B.Sc. Microbiology Honours

V	Pract	ical	30	
	1	CLSI guidelines for detection of antibiotic resistance		
	2	Antibioic sensitivity test-Disc diffusion method		
	3	MIC and MBC		

Books and References:

- 1. Antimicrobial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications" edited by Rosalind Brice
- 2. Emerging Antibiotic Resistance: Mechanisms and Strategies" by P. S. Chauhan and R. K. Sharma
- 3. Antibiotics: Actions, Origins, Resistance" by C. Walsh and A. Wencewicz
- 4. Antibiotic Policies: Fighting Resistance" by I. M. Gould and J. Van der Meer
- 5. Antimicrobial Therapy: Challenges and Innovations" by S. K. Jain and R. K. Mishra
- 6. Antibiotic Resistance Protocols" edited by S. Gillespie and L. B. Woolveridge

Mapping of COs with PSOs and POs:

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1	3				3	2	2	1		
CO3	1	3	2				2	2	3			1
CO4		3	1	2			2	1	2	3		2
CO5			3	2	1			3	2	1		3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics :

Course Outcome (CO)	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark	\checkmark	\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3	\checkmark		\checkmark	
CO4	\checkmark		\checkmark	
CO5				\checkmark

MBY8CJ 406/MBY8MN 406. BIOSTATISTICS AND BIOINFORMATICS

Programme	B. Sc. Microbiology						
Course Code	MBY8CJ 406/MBY8MN 406						
Course Title	Biostatistics and Bioi	nformatics					
Type of Course	Major/Minor						
Semester	VIII						
Academic Level	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	60		
Pre-requisites	Nil						
Course	This course provides an in-depth exploration of Biostatistics and						
Summary	Bioinformatics, essential disciplines in modern biological research. The						
	course is designed to equip students with the necessary statistical and						
	computational tools to	o analyze bio	ological data	effectively.			

Course Outcomes (CO):

÷

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand fundamental biostatistical concepts and apply them to biological data analysis.	U	С	Quizzes, Internal Exam				
CO2	Apply regression analysis, ANOVA, and hypothesis testing to solve complex biological questions.	Ар	Р	Assignments, Internal Exam				
CO3	Utilize bioinformatics tools for sequence analysis and genetic data interpretation.	Ар	Р	Practical Assessments, Internal Exam				
CO4	Develop proficiency in using biological databases and bioinformatics software for research.	Ар	Р	Practical Assessments				
CO5	Analyzeandconstructphylogenetictreestostudymolecular evolution.	An	С	EndSemesterExam,PracticalAssessments				
* - Re # - Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							
Module	Unit	Content	Hrs (45+30)	Marks (70)				
--------	-------	---	----------------	---------------				
Ι	Intro	duction to Biostatistics and Basic Statistical Methods	10	10				
	1	Introduction to Biostatistics - Definition and importance in biological research.						
	2	Descriptive Statistics - Frequency distribution, Graphical and diagrammatic representations.						
	3	Measures of Central Tendency - Mean, Median, Mode.						
	4	Measures of Dispersion - Range, Variance, Standard deviation, Coefficient of variation.						
	5	Diversity Index and Data Description - Explanation and calculation methods, including data visualization techniques.						
	6	Statistical Inference - Populations vs. samples, Sampling techniques, Standard error, Confidence intervals.						
II	Adva	nced Statistical Methods in Biological Research	10	20				
	7	Probability Distributions - Binomial distribution, Poisson distribution, Normal distribution and its applications in genetics.						
	8	Regression Analysis - Simple linear regression, Multiple regression analysis.						
	9	Correlation and Regression Techniques - Correlation analysis, advanced regression modeling.						
	10	Analysis of Variance (ANOVA) - One-way ANOVA, Two-way ANOVA, principles of experimental design.						
	11	Hypothesis Testing and Goodness of Fit - Null and alternative hypotheses, Type I and Type II errors, Tests of significance: Normal, Chi-square, t-test, F-test, Goodness of fit tests.						
III	Intro	duction to Bioinformatics and Biological Databases	15	20				
	12	Basics of Bioinformatics - Definition, history, and scope of bioinformatics.						
	13	Bioinformatics Web Portals - Overview of NCBI, EBI, ExPASy.						
	14	Introduction to Biological Databases - Classification of databases: Primary (GenBank), Secondary (PIR), Tertiary (KEGG) databases.						
	15	Sequence Databases and Data Retrieval - DNA (ENA, DDBJ), Protein (Swissprot, PROSITE), using Entrez, SRS, and DBGet.						
	16	Gene and Protein Sequence Analysis - Practical techniques for analyzing sequences from nucleotide and protein databases.						

•

IV	Sequ	ence Analysis and Bioinformatics Tools	10	20
	17	Molecular Visualization and Sequence Alignment -		
		Molecular visualization techniques, basics of sequence		
		alignment including match, mismatch, gaps.		
	18	Pairwise and Multiple Sequence Alignment - Scoring		
		alignments, use of scoring matrices like PAM, BLOSUM.		
	19	Sequence Analysis Tools and Applications - Utilizing		
		BLAST, FASTA, GCG Wisconsin/Emboss packages.		
	20	Phylogenetic Analysis and Molecular Evolution -		
		Phylogenetic tree construction methods, evolutionary		
		models and substitution matrices.		
	21	Advanced Bioinformatics Applications - Homology		
		modeling, molecular docking techniques, protein		
		structure prediction using Swiss Model, validation using		
		What Check and Pro Check.		
	22	Molecular Visualization and Sequence Alignment -		
		Molecular visualization techniques, basics of sequence		
		alignment including match, mismatch, gaps.		
V	Pract	ical	30	
	1	1. Biological Databanks- Sequence Databases,		
		Structure Databases, Specialized Databases		
		2. Introduction to National Center for Biotechnology		
		Information (NCBI)		
		3. Data retrieval: Entrez, SRS and DBGet.		
		4. Analysis of gene sequence from nucleotide		
		database.		
		5. Analysis of protein sequence from protein database.		
		6. Introduction to PDB and analysis of PDB file.		
		7. Molecular visualization		
		8. Gene structure and function prediction (using		
		GenScan, GeneMark)		
		9. Sequence similarity searching using BLAST and		
		interpretation of the results.		
		10. Multiple sequence alignment using Clustal and		
		interpretation of the results.		
		11. Protein sequence analysis using ExPASy		
		proteomics tools		
		12. Phylogenetic analysis using web tools		
		13. Phylogenetic analysis using PHYLIP		
		14. Sequence analysis using EMBOSS		
		15. Homology Modeling and Structure Refinement		
		Swiss model		
		16. Model validation using What Check and Pro Check		
		17. Statistical software packages (e.g., R, SPSS)		

•

- 1. Pagano, M., & Gauvreau, K. (2018). *Principles of Biostatistics* (2nd ed.). Brooks/Cole Cengage Learning.
- 2. Baldi, P., & Brunak, S. (2021). *Bioinformatics: The Machine Learning Approach* (2nd ed.). MIT Press.
- 3. Dunn, O. J., & Clark, V. (2018). *Basic Statistics: A Primer for the Biomedical Sciences* (5th ed.). Wiley.
- 4. Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). *Biological Sequence Analysis*. Cambridge University Press.
- 5. Glantz, S. A., & Slinker, B. K. (2021). *Primer of Biostatistics* (8th ed.). McGraw-Hill Education.
- 6. Pevsner, J. (2015). *Bioinformatics and Functional Genomics* (3rd ed.). Wiley-Blackwell.
- 7. Baldi, P., & Brunak, S. (2021). *Bioinformatics: The Machine Learning Approach* (2nd ed.). MIT Press.
- 8. Mount, D. W. (2021). *Bioinformatics: Sequence and Genome Analysis* (3rd ed.). Cold Spring Harbor Laboratory Press.
- 9. Aluru, S. (Ed.). (2019). *Handbook of Computational Molecular Biology*. Chapman and Hall/CRC.

CO	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	3			3	2	1		3	1
CO2	3	3	2				3	3	2	1		2
CO3	2	3	3				2	3	3		1	3
CO4	1	2	3	2	3		1	2	3	3	2	
CO5	2	1	2	3			2	1	2	3	3	2

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignment	Practical Assessment	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark		\checkmark	\checkmark
CO4		\checkmark	\checkmark	\checkmark
C05			\checkmark	\checkmark

MBY8CJ 407-SOFTWARE TOOLS IN RESEARCH

Programme	B. Sc. Microbiology	B. Sc. Microbiology					
Course Code	MBY8CJ407/MBY81	MN407					
Course Title	Software tools in rese	earch					
Type of Course	Major/Minor						
Semester	VIII						
Academic Level	400 - 499						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course introduc	es a variety	of software	tools that are	essential in		
Summary	different stages of t	he research	process, foc	using on app	olications in		
	biological research. Students will become familiar with data management,						
	analysis, and present	analysis, and presentation tools, as well as referencing and plagiarism					
	detection software.						

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Understand and utilize various academic and referencing tools to support research activities.	U	С	Internal Exam, Assignment				
CO2	Apply statistical packages to analyze quantitative and qualitative research data.	Ар	Р	Internal Exam, Assignment				
CO3	Implement tools for effective writing, formatting, and data representation in research documentation.	Ap	Р	Internal Exam, Assignment, Project Evaluation				
CO4	Utilize computational applications for analyzing biological data, including sequence and structural analysis.	Ap	Р	Internal Exam, Assignment, Project Evaluation				
CO5	Evaluate the ethical implications of using software tools in research, particularly in data presentation and publication.	E	С	Assignment, Project Evaluation				
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Fa	ctual Knowledge(F) Conceptual Know	ledge (C) Pro	cedural Know	ledge (P)				
Metac	cognitive Knowledge (M)							

Module	Unit	Content	Hrs (48+12= 60)	Marks (70)
1	Basic	tools for research	12	15
	1	Literature search academic databases	2	
	2	Referencing tools like Sodhganga/INFLIBNET, ERIC and E-vidwan	2	
	3	Data presentation tools- MS Excel, Origin, Canva, and Adobe Illustrators	2	
	4	Open access publication and software tools to identify predatory publications	2	
	5	Software for the detection of Plagiarism.	2	
2	Refere	ence Management Software	12	15
	6	Basic features of reference Managing Software	2	
	7	Primary uses in thesis writing and journal article publication	2	
	8	Zotero as reference managing software and its application	2	
	9	Mendeley as reference managing software and its application	2	
	10	Endnote as reference managing software and its	2	
3	Statis	tical packages for data analysis	12	20
C C	11	Difference between quantitative and qualitative packages	1	
	12	R and R studio	4	
	13	SPSS	3	
	14	Graphpad for conducting T-test	1	
	15	Methods of Qualitative data analysis and helpful software tools	1	20
4	Tools	for effective writing, formatting and data representation	12	
	16	Grammer checking tools (Grammarly),	1	
	17	Paraphrasing tools (Quiillbot)	1	
	18	AI tools (Chatgpt)	1	
	19	Data presentation using Microsoft Excel	2	
	20	Data presentation using Origin Software	2	
	21	Data representation using online tools like Canva and Adobe Illustrators	1	
	22	Latex/latex overleaf for data formatting	2	
5	Comp	utational Applications in Biological Research (Open-ended)	12	
	1	Introduction to biological databases (e.g., NCBI, UniProt)		
	2	Essential tools for sequence analysis (e.g., BLAST)		
	3	Genome browsers (e.g., UCSC Genome Browser), Protein structure prediction tools (e.g., SWISS-MODEL)		
	4	Structural Biology Tools-Molecular visualisation tools		

•

	(e.g., PyMOL, Chimera)	
5	Protein docking and molecular dynamics simulations	

References:

- 1. Muenchen, Robert A. 2011. *R for SAS and SPSS Users*. 2nd ed. 2011 edition. New York: Springer-Verlag New York Inc.
- Mount, D.W. 2005. "Bioinformatics: Sequence and Genome Analysis Mount, D.W.: https://www.abebooks.com/9788123912417/Bioinformatics-Sequence-Genome-Analysis-Mount-8123912412/plp.
- 3. Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools" by Supratim Choudhuri
- 4. Online tutorials and documentation for specific tools and databases.

	PSO	PSO	PSO	PSO	PSO	PSO	PO1	PO2	PO3	PO4	PO5	PO6
	1	2	3	4	5	6						
CO1	3	2	1				3	1				2
CO2	1	3	2				2	3	1			1
CO3	2	1	3				1	2	3	1		
CO4	2	1	3				1	2	3	1	2	
CO5			1	2	3			1	2	3	2	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
01	\checkmark	\checkmark		\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark
CO4		\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark	

MBY8CJ 408. PHARMACEUTICAL MICROBIOLOGY

Programme	B. Sc. Microbiology	B. Sc. Microbiology					
Course Code	MBY8CJ408/MBY8	MN408					
Course Title	Pharmaceutical micro	obiology					
Type of Course	Major/Minor						
Semester	Vlll						
Academic Level	400-499	400-499					
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course aims to equip students with the necessary knowledge and skill						
Summary	to address the intrica	te relationsh	ip between I	Microorganisn	n and human		
	health, infectious dise	eases and pha	armaceutical				

Course Outcomes (CO):

-

CO	CO Statement	Cognitive	Knowledge	Evaluation				
		Level*	Category#	Tools used				
CO1	Analyze the principles of chemotherapy including clinical and laboratory diagnostic techniques.	An	С	Internal Exam, End Semester Exam				
CO2	Critically evaluate the mechanisms of antibiotic resistance and strategies for developing new therapeutics.	An	С	Assignments, Internal Exam, End Semester Exam				
CO3	Investigate microbial contamination processes in pharmaceutical products and detail advanced contamination control strategies.	An	С	Assignments, Internal Exam, End Semester Exam				
CO4	Assess the principles and technological applications in the preservation of pharmaceutical products.	E	С	Assignments, Internal Exam, End Semester Exam				
CO5	Conduct and interpret antimicrobial assays to evaluate the effectiveness of growth-inhibiting substances.	Ар	С	Assignments, Internal Exam, End Semester Exam				
* - Re # - Metac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

÷

.

Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Princ	iples of chemotherapy	12	10
	1	Clinical and lab diagnosis		
	2	Sensitivity testing		
	3	Choice of drug and usage		
	4	Route of administration of drugs		
	5	Combined or mixed multi drug therapy		
	6	Control of antibiotic/drug usage.		
II	Antib	viotics resistance and development of new therapeutics	12	20
	7	Development and mechanism of antibiotic resistance		
	8	Anti microbial peptides		
	9	Sources, mode of action, application		
	10	Phage therapy: introduction to phage lytic cycle, types of		
		phages involved in phage therapy.		
	11	Plant based therapeutic agents		
III	Micro	bial production and spoilage of pharmaceutical	12	20
	produ	icts		
	12	Microbial contamination and spoilage of pharmaceutical		
		products		
	13	Sterile, injectibles, non injectible, ophthalmic control of		
		pharmaceutical		
	14	pharmaceutical produced by microbial		
		fermentations(streptokinase, streptodornase)		
	15	New vaccine technologies, DNA vaccine, multi sub unit		
		vaccine		
IV	Prese	rvation of pharama products	12	20
	16	principles of preservation		
	17	objectives of preservation		
	18	ideal preservative, rational development of a product		
		preservative system.		
	19	Antimicrobial preservatives and their properties		
	20	preservatives monographs. Preservatives stability and		
		efficiency. method of preservative evaluation and testing.		
	21	antimicrobial activity, factors affecting antimicrobial		
		activity,		
	22	Assay for antibiotics –determination of MIC		
V	Open	Ended	12	
	1	A brief idea on Antimicrobial assay		

-

1. Hugo, W. B., & Russell, A. D. (2009). Pharmaceutical Microbiology (7th ed.). Wiley-Blackwell.

- 2. Denyer, S. P., Hodges, N. A., & Gorman, S. P. (Eds.). (2020). *Hugo and Russell's Pharmaceutical Microbiology* (9th ed.). Wiley-Blackwell.
- 3. Walsh, C., & Wencewicz, T. A. (2016). *Antibiotics: Challenges, Mechanisms, Opportunities*. ASM Press.
- 4. Roitt, I., Brostoff, J., & Male, D. (2017). *Immunology* (9th ed.). Elsevier Health Sciences.
- 5. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). *Brock Biology of Microorganisms* (15th ed.). Pearson.
- 6. Silver, L. L. (2021). *Challenges of Antibiotic Resistance in the Development of New Therapeutics*. Academic Press.
- 7. Mims, C., Dockrell, H. M., Goering, R. V., Roitt, I., Wakelin, D., & Zuckerman, M. (2019). *Medical Microbiology* (6th ed.). Elsevier.
- 8. Bonten, M., & Weinstein, R. A. (Eds.). (2022). *Infection Control in the Pharmaceutical Industry: Preventing Contamination in Production and Non-Clinical Settings*. Springer.

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2			1	3		2		3	
CO2	2	3					2	2	3	3		
CO3		2	3		1		1	2	3	2		
CO4	1		3	2				3	2	3		
CO5			3	3				3	3		3	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	Project Evaluation	End Semester Examination
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark

MBY8CJ 489-RESEARCH METHODOLOGY IN BIOLOGICAL SCIENCE

Programme	B. Sc. Microbiology				
Course Code	MBY8CJ489				
Course Title	Research methodolog	y in biologic	al science		
Type of Course	Major				
Semester	VIII				
Academic Level	400 - 499				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Nil				
Course	This course introduce	s students to	the essential	principles and	d techniques
Summary	involved in conductin	g scientific r	esearch in bio	ological science	es. It covers
	the process of plann	ing research	, conducting	a literature	review, data
	collection and analysi	is, thesis writ	ing, and unde	erstanding res	earch ethics.

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
	Understand the fundamental			Internal Exam,
CO1	principles of scientific research and	U	С	End Semester
	methodology in biological sciences.			Exam
CO^{2}	Develop skills in literature review	۸n	C	Internal Exam,
002	and critical analysis of scientific data.	All	C	Assignments
	Apply various data collection and			Assignments,
CO3	analysis methods to enhance research	Ap	Р	Practical
	quality.			Assessments
CO4	Construct and present scientific	٨n	C	Internal Exam,
004	research findings effectively.	Ар	C	Presentations
	Evaluate ethical issues in biological			Internal Exam,
CO5	research and implement best practices	E	С	End Semester
	in research conduct.			Exam
* - Re	emember (R), Understand (U), Apply (Apply (Apply))	p), Analyse (A	n), Evaluate (E	C), Create (C)
# - Fa	ctual Knowledge(F) Conceptual Knowle	edge (C) Procee	dural Knowled	ge (P)
Metao	cognitive Knowledge (M)			

Detaile	u Sylla	DUS:	II	Meri
Module	Unit	Content	Hrs	Marks
T	Dlann	ing of records	(45+15=60)	(/0)
I	Plann	Ing of research	5	15
	1	Identification of suitable methodology for research	<u>l</u>	
	2	With a mit 11 main and 1	1	
	3	writing a suitable project proposal	1	
	4	Features of good research design and its uses	<u>l</u>	
	5	Types of research design	1	
11	Litera	ature search	10	15
	6	Print options for literature search-News articles –	2	
		Newsletters – Magazines – Books - Journals-short		
	7	communication-thesis	2	
	/	Relevance of digital libraries in literature search	2	
	8	Critical elements in literature search on the internet	2	
	9	Resource databases on the internet in various biological fields	2	
	10	Short communication / Review article search in both	2	
		print and online media		
III	Data	collection, analysis and presentations	15	25
	11	Data collection approaches	3	
	12	Work plan for observational and experimental	2	
		research		
	13	Tools for processing of data-basic and advanced	3	
		methods		
	14	Analysis of data by using statistical tools	5	
	15	Pictorial representation of data- Usefu open software	2	
IV	Comp	oonents of a thesis	15	15
	16	Primary structure and components of the thesis	1	
	17	Software tools for research writings	2	
	18	Thesis draft submission and evaluation	1	
	19	Arrangement of Bibliography and reference managing	2	
	20		~	
	20	Publication of thesis for open-access	2	
	21	Research ethics	<u> </u>	
X 7	22	Plagiarism checking software	1	
V	Publi	cation/presentation of a research work (open-	15	
	1	Publication of books/book chapters		
	2	Publication of articles in journals- peer-viewed		
		journal selection based on citation indices and impact		
		tactor		
	3	Manuscript preparation methods according to journal		
		policies		

4	Research presentation in Conferences/Seminars	
5	Research article publications in print and Online media	

- 1. Anderson, Durston, & Poole. (1970). *Thesis and Assignment Writing*. Wiley Eastern Limited.
- 2. Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., & Fitzgerald, W. T. (2016). *The Craft of Research* (4th ed.). University of Chicago Press.
- 3. Rajendrakumar, C. (2008). Research Methodology. APH Publishing Corporation.
- 4. Kothari, C. R. (2004). *Research Methodology: Methods and Techniques* (2nd ed.). New Age International Publishers.
- 5. Gurumani, N. (2006). *Research Methodology for Biological Sciences*. MJP Publishers.
- 6. Marczyk, G., DeMatteo, D., & Festinger, D. (2005). *Essentials of Research Design and Methodology*. John Wiley & Sons.
- 7. Katz, M. J. (2009). From Research to Manuscript: A Guide to Scientific Writing (2nd ed.). Springer.
- 8. Alley, M. (1996). The Craft of Scientific Writing (3rd ed.). Springer.
- 9. Cargill, M., & O'Connor, P. (2013). *Writing Scientific Research Articles: Strategy and Steps* (2nd ed.). Wiley-Blackwell.
- 10. Blake, G., & Bly, R. W. (2000). The Elements of Technical Writing. Pearson.
- 11. Reep, D. C. (2014). *Technical Writing: Principles, Strategies, and Readings* (8th ed.). Longman.

PSO PSO PS PSO PSO4 PSO6 PO5 **PO1** PO2 PO3 **PO4** CO **PO6** 01 2 3 5 3 2 1 2 2 CO1 1 3 CO2 2 3 2 2 3 3 3 CO3 2 3 3 2 3 2 1 1 1 2 CO4 3 3 3 3 2 CO5 3 3 3 3 3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

÷.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	Presentations	End Semester Examination
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		
CO3		\checkmark		\checkmark
CO4	\checkmark		\checkmark	
CO5	\checkmark			\checkmark

ELECTIVE COURSES

•

No	Course	Sem	Code	Title
1	Elective	V	MBY5EJ 301 (1)	Introduction to rDNA technology
2	Elective	V	MBY5EJ 302 (1)	Tools and Techniques in rDNA technology
3	Elective	V	MBY5EJ 303 (2)	Basic Human Physiology
4	Elective	V	MBY5EJ 304 (2)	Techniques in clinical laboratory
5	Elective	V	MBY5EJ 305 (3)	Microbes in Food and Water
6	Elective	V	MBY5EJ 306 (3)	Food quality assurance
7	Elective	V	MBY5EJ 307	Enzymology
8	Elective	VI	MBY6EJ 301 (1)	Applications of rDNA technology-1
9	Elective	VI	MBY6EJ 302 (1)	Applications of rDNA technology-II
10	Elective	VI	MBY6EJ 303 (2)	Diagnostic Microbiology
11	Elective	VI	MBY6EJ 304 (2)	Advanced Diagnostic techniques in microbiology
				Laboratory techniques for food and water
12	Elective	VI	MBY6EJ 305 (3)	analysis
13	Elective	VI	MBY6EJ 306 (3)	Food and water borne diseases
14	Elective	VI	MBY6EJ 307	Microbial Taxonomy
15	Elective	VI	MBY6EJ 308	Biosafety and Bioethics
16	Elective	VIII	MBY8EJ 401	Cell Biology
17	Elective	VIII	MBY8EJ 402	Cell and Tissue culture
18	Elective	VIII	MBY8EJ 403	Plant Pathology
19	Elective	VIII	MBY8EJ 404	Microbes in extreme environment
20	Elective	VIII	MBY8EJ 405	Virology and Emerging Microbial Diseases
21	Elective	VIII	MBY8EJ 406	Plant derived antimicrobials
22	Elective	VIII	MBY8EJ 407	Developmental biology

MBY5EJ 301(1). INTRODUCTION TO RDNA TECHNOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY5EJ 301(1)					
Course Title	Introduction to rDNA	technology				
Type of Course	Major-Elective					
Semester	V					
Academic Level	300-399					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Nil					
Course	This course offers a	an introducto	ory explorati	on of recom	binant DNA	
Summary	technology, coverin	technology, covering the fundamentals of gene cloning, DNA				
	manipulation, and t	he various a	applications	of rDNA te	chnology in	
	modern science and r	nedicine.				

Course Outcomes (CO):

•

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Describe the basic principles of genetic engineering.	U	С	Internal Exam, End Semester Exam		
CO2	Explain the process of purifying DNA from living cells for cloning purposes.	U	С	Assignments, Internal Exam, End Semester Exam		
CO3	Detail the steps involved in purifying plasmid DNA as a vector.	U	С	Assignments, Internal Exam, End Semester Exam		
CO4	Outline the types of bacteriophages and the method for purifying bacteriophage DNA.	U	С	Assignments, Internal Exam, End Semester Exam		
CO5	Provide insights into the isolation and preparation of RNA as a foundation for advanced genetic studies.	U	С	Assignments, Internal Exam, End Semester Exam		
* - Re # - Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

÷.

Detailed Syllabus:

Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Intro	duction to Gene Cloning	12	10
	1	History of rDNA technology		
	2	Basic principles of genetic engineering.		
	3	Define Gene cloning		
	4	Define Foreign DNA, Vector, Recombinant DNA molecule		
	5	Introduction to Polymerase Chain Reaction		
	6	Cohen and Boyer Patent		
II	Isolat	ion of Total cell DNA of bacteria	12	20
	7	Define total cell DNA		
	8	Preparation of total cell DNA: Growing and harvesting of a bacterial culture		
	9	Preparation of cell extract		
	10	Purification of DNA from cell extract		
	11	Concentration of DNA samples, Measurement of DNA		
		concentration		
III	Isola	tion of Plasmid DNA	12	20
	12	Plasmids, Types of plasmids. Plasmids other than bacteria.		
	13	Preparation of plasmid DNA: Separation on the basis of size		
	14	Separation on the basis of conformation		
	15	Plasmid amplification		
	16	Applications of plasmid DNA		
IV	Isolat	ion of Bacteriophage DNA	12	20
	17	Bacteriophages: Lytic and Lysogenic phages		
	18	Lambda phage, M13 Phage		
	19	Growth of cultures to obtain high bacteriophage titre.		
	20	Preparation of non-lysogenic lambda phages		
	21	Collection of phages from an infected culture		
	22	Purification of DNA from lambda phage particles and M13		
		DNA		
V	Open	Ended	12	
	1	Brief idea on Isolation and Preparation of RNA		

Books and References:

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (8th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2016). *Principles of Gene Manipulation and Genomics* (8th ed.). Blackwell Publishing.

- 3. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 4. Griffiths, A. J., Wessler, S. R., Carroll, S. B., & Doebley, J. (2015). *Introduction to Genetic Analysis* (11th ed.). W. H. Freeman.
- 5. Lewin, B., Cassimeris, L., Lingappa, V. R., & Plopper, G. (2017). *Lewin's GENES XII* (12th ed.). Jones & Bartlett Learning.
- 6. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). *Molecular Biology of the Cell* (6th ed.). Garland Science.

CO	PSO 1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO 6
CO1	3		2		1		3		1		2	
CO2	2	3					2	2	3		3	
CO3		2	3		1		1	3	2	2	2	1
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	Project Evaluation	End Semester Examination
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark

MBY5EJ 302 (1). TOOLS AND TECHNIQUES IN RDNA TECHNOLOGY

Programme	B. Sc. Microbiology				
Course Code	MBY5EJ 302 (1)				
Course Title	Tools and Techniques	s in rDNA te	chnology		
Type of Course	Major-Elective				
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Nil				
Course	This course attempts	to introduc	e the basic	concept of di	fferent gene
Summary	cloning tools like	enzymes an	d different	vectors used	in genetic
	engineering and leads	s to the unde	rstanding of	procedures the	at have been
	leveloped to exploit the knowledge of the replication and expression of				
	genetic information.				

Course Outcomes (CO):

÷.

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Describe the functions and types of enzymes used in genetic engineering, such as restriction endonucleases and ligases.	U	С	Internal Exam, End Semester Exam
CO2	Explain the different vectors used in gene cloning, including plasmids and artificial chromosomes.	U	С	Internal Exam, End Semester Exam
CO3	Detail methods for introducing recombinant DNA into host cells, such as transformation and electroporation.	U	С	Internal Exam, End Semester Exam
CO4	Interpret techniques used for DNA amplification and sequencing, emphasizing PCR and its variants.	An	С	Internal Exam, End Semester Exam
CO5	Evaluate the applications and ethical considerations of rDNA technology in modern biotechnology.	Е	С	Internal Exam, End Semester Exam
* - Re # - Fa Metao	emember (R), Understand (U), Apply actual Knowledge(F) Conceptual Know cognitive Knowledge (M)	(Ap), Analys wledge (C) Pr	e (An), Evalua rocedural Knov	te (E), Create (C) wledge (P)

I Enzymes used in genetic engineering. 12 10 1 Restriction endonucleases: Types I,II and III 12 10 2 DNAPolymerases,RNApolymerases,Terminal deoxynucleotidyl transferase 16 17 3 Reverse Transcriptase, Ligases 16 12 20 4 Taq Polymerase, Topoisomerases 12 20 5 Methyl transferase, Kinases,Phosphatase,S1 nuclease 12 20 7 Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors, and Phasmids. 12 20 8 λ vectors, M13 vectors. 12 20 9 Phagemids and Phasmids. 10 11 Expression vectors, Replacement vectors- Replacement vectors, Sustom vector, Cosmids. Vectors for yeast and mammalian systems. 12 20 11 Expression vectors for yeast and mammalian systems. 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaqu	Module	Unit	Content	Hrs (48+12)	Marks (70)
1 Restriction endonucleases: Types I,II and III 2 DNAPolymerases,RNApolymerases,Terminal deoxynucleotidyl transferase 3 Reverse Transcriptase, Ligases 4 Taq Polymerase, Topoisomerases 5 Methyl transferase,Kinases,Phosphatase,S1 nuclease 6 TOPO cloning 7 Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors, 8 λ vectors, M13 vectors, 9 Phagemids and Phasmids. 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors,Fusion vector, Cosmids.Vectors for yeast and mammalian systems. 11 Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 12 20 15 DNA Amplification-PCR 12 20 16 Types of PCR 12 20	Ι	Enzyı	mes used in genetic engineering.	12	10
2 DNAPolymerases,RNApolymerases,Terminal decoxynucleotidyl transferase		1	Restriction endonucleases: Types I,II and III		
decoxynucleotidyl transferase decoxynucleotidyl transferase 3 Reverse Transcriptase, Ligases		2	DNAPolymerases, RNApolymerases, Terminal		
3 Reverse Transcriptase, Ligases 4 Taq Polymerase, Topoisomerases 5 Methyl transferase,Kinases,Phosphatase,S1 nuclease 6 TOPO cloning 11 Cloning vectors 7 Plasmids as cloning vectors, pBR322,pUC λ vectors, M13 vectors, 8 λ vectors, M13 vectors, 9 Phagemids and Phasmids. 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors, Fusion vector, Cosmids. Vectors for yeast and mammalian systems. 111 Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 14 Selection and screening of recombinant clones: alpha complementation, insertional inactivation. 15 15 DNA Amplification, insertional inactivation. 12 20 17 Techniques in Genetic Engineering 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 18 18			deoxynucleotidyl transferase		
4 Taq Polymerase, Topoisomerases		3	Reverse Transcriptase, Ligases		
5 Methyl transferase,Kinases,Phosphatase,S1 nuclease 6 TOPO cloning II Cloning vectors 7 Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors, 8 λ vectors, M13 vectors, 9 Phagemids and Phasmids. 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 Expression vectors, Replacement vectors- Replacement vectors, Shuttle vectors, Insertion vectors,Fusion vector, Cosmids.Vectors for yeast and mammalian systems. III Methods in Gene Cloning 12 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification-PCR 16 Types of PCR 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 DNA Fingerprinting- Brief account of RFLP,RAPD 21 Brief account of Transposons, Transposons		4	Taq Polymerase, Topoisomerases		
6 TOPO cloning 12 20 II Cloning vectors 12 20 7 Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors, 10 8 λ vectors, M13 vectors, 10 9 Phagemids and Phasmids. 10 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors,Fusion vector, Cosmids.Vectors for yeast and mammalian systems. 12 20 11 Expression vectors for yeast and mammalian systems. 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification- PCR 16 14 Selection and screening 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 12 20 18 Blotting Techniques : Southern, Western 12 20 19 DNA sequencing m		5	Methyl transferase, Kinases, Phosphatase, S1 nuclease		
II Cloning vectors 12 20 7 Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors, 8 λ vectors, M13 vectors, 9 9 Phagemids and Phasmids. 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 12 20 11 Expression vectors, Replacement vectors- Replacement vector, Cosmids. Vectors for yeast and mammalian systems. 12 20 11 Expression vectors for yeast and mammalian systems. 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification-PCR 16 17 DNA Libraries: Brief account of DNA libraries and its application 20 17 DNA Libraries: Brief account of DNA libraries and its application 21 21 20 17 DNA Libraries: Brief account of RFLP, RAPD 21 31 30 30		6	TOPO cloning		
7 Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors, 8 λ vectors, M13 vectors, 9 Phagemids and Phasmids. 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors, Fusion vector, Cosmids. Vectors for yeast and mammalian systems. III Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 15 DNA Amplification-PCR 16 17 20 17 DNA Libraries: Brief account of DNA libraries and its application 20 18 Blotting Techniques : Southern, Western 19 20 18 Blotting Techniques : Southern, Western 21 21 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 21 Brief account of Transposons tagging and its applications 22 22 Difference between	II	Cloni	ng vectors	12	20
8 λ vectors, M13 vectors, 9 9 Phagemids and Phasmids. 10 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors,Fusion vector, Cosmids. Vectors for yeast and mammalian systems. 12 11 Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification-PCR 16 16 Types of PCR 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 20 21 Brief account of Transposons, Transposons tagging and its applications 21 12 20 17 DNA Fingerprinting- Brief account of RFLP, RAPD 21 21 Brief account of Transposons, Transposons tagging and its applicatio		7	Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors,		
9 Phagemids and Phasmids. 10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors, Fusion vector, Cosmids. Vectors for yeast and mammalian systems. III Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 12 20 15 DNA Amplification- PCR 12 20 16 Types of PCR 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 12 20 17 DNA sequencing methods. 20 20 20 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 21 21 Brief account of Transposons, Transposons tagging and its applications 22 22 21 21 Brief account of Transposone walking and chromosome jumping. 12 12 12 <td< td=""><td></td><td>8</td><td>λ vectors, M13 vectors,</td><td></td><td></td></td<>		8	λ vectors, M13 vectors,		
10 Artificial Chromosomes YAC,PAC,BAC,HAC. 11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors, Fusion vector, Cosmids.Vectors for yeast and mammalian systems. III Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 12 20 15 DNA Amplification- PCR 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 20 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 DNA Fingerprinting- Brief account of RFLP, RAPD 21 Brief account of Transposons, Transposons tagging and its applications 21 Difference between Chromosome walking and chromosome jumping. 12 12 V Open Ended 12 12 1 Visit to research institutes 2 2 Discussion on CRISPR technology <td></td> <td>9</td> <td>Phagemids and Phasmids.</td> <td></td> <td></td>		9	Phagemids and Phasmids.		
11 Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors, Fusion vector, Cosmids. Vectors for yeast and mammalian systems. 12 20 11 Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification- PCR 16 Types of PCR 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 12 20 18 Blotting Techniques : Southern, Western 19 20 19 DNA sequencing methods. 20 20 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 21 Brief account of Transposons, Transposons tagging and its applications 12 22 Difference between Chromosome walking and chromosome jumping. 12 1 Visit to research institutes 2 12 2 Discussion on CRISPR technology 12 </td <td></td> <td>10</td> <td>Artificial Chromosomes YAC, PAC, BAC, HAC.</td> <td></td> <td></td>		10	Artificial Chromosomes YAC, PAC, BAC, HAC.		
Vector, Shuttle vectors, Insertion vectors,Fusion vector, Cosmids.Vectors for yeast and mammalian systems. 12 III Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification- PCR 16 16 Types of PCR 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 12 20 17 DNA sequencing methods. 20 20 17 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 Brief account of Transposons, Transposons tagging and its applications 22 21 Brief account of Transposone walking and chromosome jumping. 12 1 V Open Ended 12 12 1 Visit to research institutes 2		11	Expression vectors, Replacement vectors- Replacement		
III Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 12 20 15 DNA Amplification- PCR 12 20 16 Types of PCR 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 12 20 18 Blotting Techniques : Southern, Western 19 14 Brief account of Transposons, Transposons tagging and its applications 12 20 21 Brief account of Transposons, Transposons tagging and its applications 12 1 12 22 Difference between Chromosome walking and chromosome jumping. 12 1 12 V Open Ended 12 12 1 1 Visit to research institutes 12 1 2 Discussion on CRISPR technology 12 1			vector, Shuttle vectors, Insertion vectors, Fusion vector,		
III Methods in Gene Cloning 12 20 12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 15 DNA Amplification- PCR 16 16 Types of PCR 12 17 DNA Libraries: Brief account of DNA libraries and its application 18 18 Blotting Techniques : Southern, Western 19 19 DNA sequencing methods. 20 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 21 Brief account of Transposons, Transposons tagging and its applications 12 22 Difference between Chromosome walking and chromosome jumping. 12 V Open Ended 12 12 1 Visit to research institutes 2 2 2 Discussion on CRISPR technology 12			Cosmids.Vectors for yeast and mammalian systems.		
12 Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment. 13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification- PCR 16 Types of PCR 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 Brief account of Transposons, Transposons tagging and its applications 22 Difference between Chromosome walking and chromosome jumping. V Open Ended 12 1 Visit to research institutes 12	III	Meth	ods in Gene Cloning	12	20
13 Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), Agrobacterium mediated gene delivery 14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification- PCR 16 Types of PCR 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 Brief account of Transposons, Transposons tagging and its applications 22 Difference between Chromosome walking and chromosome jumping. V Open Ended 12 12 1 Visit to research institutes 2 Discussion on CRISPR technology		12	Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment.		
14 Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation. 15 DNA Amplification- PCR 16 Types of PCR IV Techniques in Genetic Engineering 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 Brief account of Transposons, Transposons tagging and its applications 22 Difference between Chromosome walking and chromosome jumping. V Open Ended 12 1 Visit to research institutes 12 2 Discussion on CRISPR technology 12		13	Gene Delivery methods- micro injection, Electroporation, Biolistics (gene gun), <i>Agrobacterium</i> mediated gene delivery		
15 DNA Amplification- PCR 16 Types of PCR IV Techniques in Genetic Engineering 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 18 Blotting Techniques : Southern, Western 10 10 10 19 DNA sequencing methods. 10 10 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 10 21 Brief account of Transposons, Transposons tagging and its applications 11 22 Difference between Chromosome walking and chromosome jumping. 12 V Open Ended 12 1 Visit to research institutes 12 2 Discussion on CRISPR technology 12		14	Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation.		
10 Difference between Chromosome walking and chromosome jumping. 10 Techniques in Genetic Engineering 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 12 20 18 Blotting Techniques : Southern, Western 13 14 14 14 15 16 17 18 10 12 20 18 Blotting Techniques : Southern, Western 19 10 1		15	DNA Amplification- PCR		
IV Techniques in Genetic Engineering 12 20 17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 10 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 11 11 11 21 Brief account of Transposons, Transposons tagging and its applications 11 12 22 Difference between Chromosome walking and chromosome jumping. 12 12 1 Visit to research institutes 12 12 2 Discussion on CRISPR technology 12		16	Types of PCR		
17 DNA Libraries: Brief account of DNA libraries and its application 18 Blotting Techniques : Southern, Western 19 DNA sequencing methods. 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 Brief account of Transposons, Transposons tagging and its applications 22 Difference between Chromosome walking and chromosome jumping. V Open Ended 12 1 Visit to research institutes 12 2 Discussion on CRISPR technology 12	IV	Tech	niques in Genetic Engineering	12	20
18 Blotting Techniques : Southern, Western 1 19 DNA sequencing methods. 1 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 1 21 Brief account of Transposons, Transposons tagging and its applications 1 22 Difference between Chromosome walking and chromosome jumping. 12 V Open Ended 12 1 Visit to research institutes 1 2 Discussion on CRISPR technology 1		17	DNA Libraries: Brief account of DNA libraries and its application		
19 DNA sequencing methods. 20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 Brief account of Transposons, Transposons tagging and its applications 22 Difference between Chromosome walking and chromosome jumping. V Open Ended 1 Visit to research institutes 2 Discussion on CRISPR technology		18	Blotting Techniques : Southern, Western		
20 DNA Fingerprinting- Brief account of RFLP ,RAPD 21 Brief account of Transposons, Transposons tagging and its applications 22 Difference between Chromosome walking and chromosome jumping. V Open Ended 12 1 Visit to research institutes 12 2 Discussion on CRISPR technology 12		19	DNA sequencing methods.		
21 Brief account of Transposons, Transposons tagging and its applications 22 Difference between Chromosome walking and chromosome jumping. V Open Ended 12 1 Visit to research institutes 2 2 Discussion on CRISPR technology 1		20	DNA Fingerprinting- Brief account of RFLP, RAPD		
22 Difference between Chromosome walking and chromosome jumping. V Open Ended 12 1 Visit to research institutes 2 2 Discussion on CRISPR technology 12		21	Brief account of Transposons, Transposons tagging and its applications		
V Open Ended 12 1 Visit to research institutes 1 2 Discussion on CRISPR technology 1		22	Difference between Chromosome walking and		
V Open Ended 12 1 Visit to research institutes 1 2 Discussion on CRISPR technology 1			chromosome jumping.		
1 Visit to research institutes 2 Discussion on CRISPR technology	V	Open	Ended	12	
2 Discussion on CRISPR technology		1	Visit to research institutes		
		2	Discussion on CRISPR technology		

÷.

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (7th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2013). *Principles of Gene Manipulation and Genomics* (8th ed.). Wiley-Blackwell.
- 3. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 4. Griffiths, A. J. F., Wessler, S. R., Carroll, S. B., & Doebley, J. (2015). *Introduction to Genetic Analysis* (11th ed.). W. H. Freeman and Company.
- 5. Dale, J. W., & von Schantz, M. (2012). From Genes to Genomes: Concepts and Applications of DNA Technology (3rd ed.). Wiley.

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	1			3	2	1		2	
CO2	2	3					2	3	2	1	3	
CO3	1	2	3				1		3	2	2	1
CO4		3	2	3				3		3		2
CO5			3		3					3	3	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignment	Project	End Semester
			Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

MBY5EJ 303(2). BASIC HUMAN PHYSIOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY5EJ 303(2)					
Course Title	Basic Human Physiol	ogy				
Type of Course	Major-Elective					
Semester	V					
Academic Level	300-399					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Nil					
Course	This course provides	a comprehen	sive explorat	tion of human	physiology,	
Summary	spanning cellular to	systemic le	vels. It exar	nines elemen	tary tissues,	
	various circulatory sy	ystems, gene	ral mechanis	ms across ma	ijor systems,	
	and bio-physical con-	and bio-physical concepts such as filtration and diffusion. Students gain				
	insight into physiological processes crucial for understanding the					
	functioning of the hur	man body.				

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate an understanding of the levels of organization in the human body including cells, tissues, organs, and systems and their interrelationships.	U	С	Internal Exam, End Semester Exam
CO2	Analyze the interplay between erythropoiesis, hemostasis, and coagulation mechanisms to explain how disruptions can lead to various blood disorders.	An	С	Internal Exam, End Semester Exam
CO3	Apply understanding of blood indices to interpret laboratory results of medical conditions associated with blood transfusions and strategies to mitigate them.	Ар	С	Internal Exam, End Semester Exam
CO4	Summarize the general mechanisms involved in various systems of the human body and analyze their interrelationships.	Е	С	Internal Exam, End Semester Exam
CO5	Demonstrate a comprehensive understanding of how these systems contribute to overall physiological function and homeostasis.	Е	С	Internal Exam, End Semester Exam

.

CO6	Apply knowledge of bio-physical principles including filtration, osmosis, diffusion, and dialysis to understand physiological processes and their implications in human health and disease.	Ар	Р	Internal Exam, End Semester Exam
* - Re # - Fa Metae	emember (R), Understand (U), Apply actual Knowledge(F) Conceptual Know cognitive Knowledge (M)	(Ap), Analys wledge (C) Pr	e (An), Evalua rocedural Knov	te (E), Create (C) wledge (P)

Detailed Syllabus:

÷

Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Gener	ral Physiology and Circulatory System	12	15
	1	Introduction to levels of organization in the human body- cells, tissue organs and different systems	2	
	2	Elementary tissues- epithelial tissue, connective tissue, muscle tissue, nervous tissue,	2	
	3	Circulatory system – blood and Lymph, Erythropoiesis;	2	
	4	Haemostasis, Coagulation of Blood, mechanisms	2	
	5	Blood indices- TC, DC,PCV,MCV,MCHC, Colour index, ESR- Their determination and Significance	2	
	6	Blood groups; Blood Transfusion hazards and Blood Volume;	2	
II	Gener huma	ral Mechanisms involved in various systems of the n body	12	20
	7	Chemical composition of the body	2	
	8	Respiratory system	2	
	9	Cardiovascular system	2	
	10	Endocrine system and Exocrine system	2	
	11	Digestive system/excretory system	2	
	12	Reproductive system	2	
III	Genei huma	ral Mechanisms involved in various systems of the n body	12	20
	13	Integumentary system	2	
	14	Nervous system	2	
	15	Urinary system/renal system	2	
	16	Reproductive system	2	
	17	Skeletal system	2	
	18	Special senses	2	
IV	Bio-P	hysical Science	12	15
	19	Filtration, Ultra filtration, Dialysis	3	
	20	Osmosis, Diffusion, Adsorption, Absorption,	3	

	21	Hydrotropy, Colloid, Donnan Equilibrium	3	
	22	Tracer elements, Assimilation, Surface tension.	3	
V	Open	Ended	30	
	1	Explore interdisciplinary connections between human physiology and other fields such as nutrition, exercise science, psychology, or public health. Students can investigate how physiological processes interact with factors like diet, physical activity, mental health, or social determinants of health, and how these interactions impact overall well-being.		
	2	Working/Still model making events		
	3	Seminar/Guest lectures		

- 1. Microbial Ecology. John Wiley & Sons, Inc., New York 2.
- 2. Introduction to Soil Microbiology by Alexander, M.(1977). John Wiley & Sons, Inc.,
- 3. Agricultural microbiology, 2nd edition. Rangaswami G., Bagyaraj D. J. Prentice hall of India.
- 4. Ronald M. Atlas., Richard Bartha. Microbial Ecology. Benjamin Cummings. 1998
- 5. Robert, L Tate (1995). Soil Microbiology. First edition, John Wiley and Sons, Inc. New York edition. Pearson Education.
- 6. Rangaswami G and Mahadevan A (2002). Disease of Crop Plants in India. Fourth edition, PHI Learning (P) Ltd., New Delhi.
- 7. Subba Rao NS (2004). Soil Microbiology. Fourth edition, Oxford and IBH Publishing Co.Pvt. Ltd., New Delhi.
- 8. Mishra RR (2004). Soil Microbiology. First edition, CBS Publishers and distributors, New Delhi.
- 9. Devlin RM. (1975). *Plant Physiology*. 3rd edition, Willard Grant Press.
- 10. Stolp H. (1988). Microbial Ecology: Organisms Habitats Activities. Cambridge University Press, Cambridge, England.
- 11. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego
- 12. Lucas JA. (1998). *Plant Pathology and Plant Pathogens*. 3rd edition. Blackwell Science, Oxford.
- 13. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 14. Rangaswami G. (2005). *Diseases of Crop Plants in India*. 4th edition. Prentice Hall of India Pvt. Ltd., New Delhi.
- 15. Singh RS. (1998). Plant Diseases Management. 7th edition. Oxford & IBH, New Delhi.
- 16. Raina M.Maier. Ian L.Pepper and Charles P.Gerba. (2000)EnvironmentalMicrobiology.Academic press California.UK

Mapping of COs with PSOs and POs:

	0											
СО	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3				2	
CO2	2	3					2	3	2		3	
CO3		2	3					3	3		2	1
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	3
CO6			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

	Internal Exam	Assignment	Project	End Semester Examinations
			Evaluation	
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			\checkmark

MBY5EJ 304(2). TECHNIQUES IN CLINICAL LABORATORY

Programme	B. Sc. Microbiology	B. Sc. Microbiology							
Course Code	MBY5EJ 304(2)								
Course Title	Techniques in Clinical Laboratory								
Type of Course	Major-Elective								
Semester	V	V							
Academic Level	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	Nil								
Course	This course provides a	a comprehen	sive understa	nding of the p	rinciples and				
Summary	techniques used in c	linical micro	obiology lab	oratories for t	the isolation,				
	identification, and cha	aracterization	n of microorg	ganisms.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Familiarize the basic principles of clinical laboratory techniques	U	C	Internal Exam, End Semester Exam
CO2	Explain various methods used in specimen collection and processing	Ар	F	Assignments, Internal Exam, End Semester Exam
CO3	Detail the steps involved in conventional methods used in clinical laboratory.	U	F	Assignments, Internal Exam, End Semester Exam
CO4	Outline the various advanced and emerging techniques in clinical field	An	С	Assignments, Internal Exam, End Semester Exam
CO5	Provide insights to various molecular level methods	U	С	Assignments, Internal Exam, End Semester Exam
* - Re # - Metao	emember (R), Understand (U), Apply Factual Knowledge(F) Conceptual cognitive Knowledge (M)	(Ap), Analys Knowledge	e (An), Evalua (C) Procedu	te (E), Create (C) Iral Knowledge (P)

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(48+12)	(70)
Ι	Intro	duction to Clinical Microbiology	12	10
	1	Overview of clinical microbiology		
	2	Scope and importance of clinical laboratory techniques.		
	3	Basic laboratory safety and hygiene		
	4	Introduction to Biosafety levels		

	5	Classification of biosafety levels		
II	Spec	imen Collection and Processing	12	20
	6	Principles of specimen collection		
	7	Processing of clinical specimens		
	8	Preservation and transportation of specimens		
	9	Blood, Sputum, Urine and fecal sample collection, transport and processing methods.		
	10	Ouality assurance in specimen collection		
Ш	Conv	ventional Methods	12	20
	11	Microscopic and Staining techniques.		
	12	Culture techniques (aerobic, anaerobic, and microaerophilic)		
	5 Classification of biosafety levels 6 Principles of specimen collection 7 Processing of clinical specimens 8 Preservation and transportation of specimens 9 Blood, Sputum, Urine and fecal sample collection, transport and processing methods. 10 Quality assurance in specimen collection 11 Microscopic and Staining techniques. 12 Culture techniques (aerobic, anaerobic, and microaerophilic) 13 Biochemical tests for bacterial identification 14 Serological and immunological methods Enzyme-linked immunosorbent assay (ELISA), Western blotting, Immunofluorescence assays (IFA) 15 Molecular techniques (PCR, DNA sequencing) V Advanced and Emerging Methods 16 Brief Account on Emerging Technologies in Clinical Microbiology - MALDI-TOF mass spectrometry, Nucleic acid amplification techniques (NAATs), Next-generation sequencing (NGS) technologies. 17 Advanced Antimicrobial Susceptibility Testing (AST) Methods - Principles and methods of advanced AST Gradient diffusion methods (Etest, M.I.C.Evaluator) 18 Automated AST systems (VITEK, MicroScan, Phoenix) 19 Point-of-Care Testing (POCT) -Principles and applications of POCT in clinical microbiology 20 Emerging Technologies - Digital PCR (dPCR), CRISPR-based diagnostic			
	14	Serological and immunological methods Enzyme-linked immunosorbent assay (ELISA), Western blotting, Immunofluorescence assays (IEA)		
IV	15	Molecular techniques (PCR_DNA sequencing)		
IV	Adv	5 Classification of biosafety levels 6 Principles of specimen collection 7 Processing of clinical specimens 8 Preservation and transportation of specimens 9 Blood, Sputum, Urine and fecal sample collection, transport and processing methods. 10 Quality assurance in specimen collection Conventional Methods 11 11 Microscopic and Staining techniques. 12 Culture techniques (aerobic, anaerobic, and microaerophilic) 13 Biochemical tests for bacterial identification 14 Serological and immunological methods Enzyme-linked immunosorbent assay (ELISA), Western blotting, Immunofluorescence assays (IFA) 15 Molecular techniques (PCR, DNA sequencing) Advanced and Emerging Methods 16 16 Brief Account on Emerging Technologies in Clinical Microbiology - MALDI-TOF mass spectrometry, Nucleic acid amplification techniques (NAATs), Next-generation sequencing (NGS) technologies. 17 Advanced Antimicrobial Susceptibility Testing (AST) Methods - Principles and methods of advanced AST Gradient diffusion methods (Etest, M.I.C.Evaluator) 18 Automated AST systems (VITEK, MicroScan, Phoenix) 19 Point-of-Care Testing (POCT) -Principles and applications of POCT in clinical microbiology 20	12	20
	16	Brief Account on Emerging Technologies in Clinical Microbiology - MALDI-TOF mass spectrometry, Nucleic acid amplification techniques (NAATs), Next-generation sequencing (NGS) technologies.		
	Specimen Collection and Processing 6 Principles of specimen collection 7 Processing of clinical specimens 8 Preservation and transportation of specimens 9 Blood, Sputum, Urine and fecal sample collection, transport and processing methods. 10 Quality assurance in specimen collection 11 Microscopic and Staining techniques. 12 Culture techniques (aerobic, anaerobic, and microaerophilic) 13 Biochemical tests for bacterial identification 14 Serological and immunological methods Enzyme-linked immunosorbent assay (ELISA), Western blotting, Immunofluorescence assays (IFA) 15 Molecular techniques (PCR, DNA sequencing) V Advanced and Emerging Methods 16 Brief Account on Emerging Technologies in Clinical Microbiology - MALDI-TOF mass spectrometry, Nucleic acid amplification techniques (NAATs), Next-generation sequencing (NGS) technologies. 17 Advanced Antimicrobial Susceptibility Testing (AST) Methods - Principles and methods of advanced AST Gradient diffusion methods (Etest, M.I.C.Evaluator) 18 Automated AST systems (VITEK, MicroScan, Phoenix) 19 Point-of-Care Testing (POCT) -Principles and applications of POCT in clinical microbiology 20 Emerging Technologies - Digi			
	18	Automated AST systems (VITEK, MicroScan, Phoenix)		
	Image: Specimen Collection and Processing General Collection 7 Processing of clinical specimens 8 Preservation and transportation of specimens 9 Blood, Sputum, Urine and fecal sample collection, transport and processing methods. 10 Quality assurance in specimen collection 11 Microscopic and Staining techniques. 12 Culture techniques (aerobic, anaerobic, and microaerophilic) 13 Biochemical tests for bacterial identification 14 Serological and immunological methods Enzyme-linked immunosorbent assay (ELISA), Western blotting, Immunofluorescence assays (IFA) 15 Molecular techniques (PCR, DNA sequencing) V Advanced and Emerging Methods 16 Brief Account on Emerging Technologies in Clinical Microbiology - MALDI-TOF mass spectrometry, Nucleic acid amplification techniques (NAATs), Next-generation sequencing (NGS) technologies. 17 Advanced Antimicrobial Susceptibility Testing (AST) Methods - Principles and methods of advanced AST Gradient diffusion methods (Etest, M.I.C.Evaluator) 18 Automated AST systems (VITEK			
	21	Quality Control and Assurance in Advanced Clinical Microbiology		
	22	Accreditation and regulatory compliance in advanced clinical laboratories		
V	Oper	n Ended	12	
	1	Molecular diagnostics for infectious diseases		
		Epidemiological typing techniques Surveillance and outbreak investigation		

- 1. Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (Eds.). (2015). Medical Microbiology. Elsevier Health Sciences.
- Forbes, B. A., Sahm, D. F., & Weissfeld, A. S. (2007). Bailey & Scott's Diagnostic Microbiology (12th ed.). Mosby.
- 3. Clinical Microbiology Procedures Handbook. (2007). ASM Press.
- Isenberg, H. D. (Ed.). (2004). Clinical Microbiology Procedures Handbook (2nd ed.). ASM Press.

CO	PSO 1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO 6
CO1	3		2		1		3		1		2	
CO2	2	3					2	2	3		3	
CO3		2	3		1		1	3	2	2	2	1
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	Project Evaluation	End Semester Examination
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark

MBY5EJ 305 (3)-MICROBES IN FOOD AND WATER

Programme	B. Sc. Microbiology									
Course Code	MBY5EJ 305 (3)									
Course Title	Microbes in Food and	d Water								
Type of Course	Major-Elective									
Semester	V									
Academic Level	300-399	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	4	-	-	60					
Pre-requisites	Nil									
Course	Students will gain a	comprehens	ive understar	nding of the o	diversity and					
Summary	roles of microbes in	n food mat	rices includi	ng their con	tributions to					
	fermentation proces	ses, food	spoilage, an	d foodborne	infections.					
	Additionally, the cou	rse will cove	er the microb	ial composition	on of aquatic					
	systems including w	astewater tre	eatment and	purification	of municipal					
	water supplies. Empl	nasis will be	placed on me	ethods for pre	serving food					
	and ensuring water	safety, as w	vell as the p	prevention an	d control of					
	waterborne diseases.									

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the diversity and roles of microbes in food and water ecosystems.	U	С	Assignments, Quizzes, Midterm Exam
CO2	Analyze the factors affecting microbial growth in food and water, and evaluate methods to control food spoilage and foodborne infections.	An	С	Assignments, Quizzes, Midterm Exam
CO3	Discuss the microbial composition of aquatic systems and evaluate methods for wastewater treatment and water purification.	U	С	Assignments, Quizzes, Midterm Exam
CO4	Examine the routes of transmission of food and waterborne pathogens and propose measures for their prevention and control.	E	С	Assignments, Quizzes, Midterm Exam
CO5	Conduct laboratory analysis of fermented and spoiled food samples and water samples from different sources, adhering to quality assurance protocols.	Ар	F	Assignments, Quizzes, Midterm Exam
* - Re # - Fa Know	emember (R), Understand (U), Apply (Ap), An actual Knowledge(F) Conceptual Knowledge (wledge (M)	nalyse (An), H (C) Procedura	Evaluate (E), Cr 11 Knowledge (I	reate (C) P) Metacognitive

۰

Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Micro	obial ecology of food and water	12	10
	1	Overview of microbes in food and water ecosystems	Hrs (48+12) 12 12 12 12 12 12 12 12 12 12 12 12 12	
	2	Growth factors of Microbes in food		
	3	Sources of microbes in food		
	4	Fermentation and spoilage		
	5	Microbes in food fermentations- Bacteria and Fungi		
	6	Microbes in food spoilage		
II	Food	spoilage and food infections	12 	20
	7	Route of transmission of food borne microbes		
	8	Bacterial food spoilage		
	9	Fungal food spoilage		
	10	Microbes in food borne infections- Bacteria, Viruses and		
		protozoa		
	11	Methods for preserving food: refrigeration, freezing,		
		drying, canning, and fermentation	ation, freezing,	
III	Micro	obes in aquatic system	12 ruses and freezing, 12 12 12 12 12 12	20
	12	Types of microbes in aquatic ecosystem		
	13	Microbes in waste water		
	14	Biological treatment of waste water		
	4 Fermentation and spoilage 5 Microbes in food fermentations- Bacteria and Fungi 6 Microbes in food spoilage 7 Route of transmission of food borne microbes 8 Bacterial food spoilage 9 Fungal food spoilage 9 Fungal food spoilage 10 Microbes in food borne infections- Bacteria, Viruses and protozoa 11 Methods for preserving food: refrigeration, freezing, drying, canning, and fermentation 12 Types of microbes in aquatic ecosystem 13 Microbes in waste water 14 Biological treatment of waste water 15 Purification of municipal water supply 16 Small scale water purification Food and water borne diseases 17 17 Bacterial water borne diseases 18 Viral waterborne diseases 19 Protozoal waterborne diseases 20 Microbial indicators of water pollution 21 Microbial indicators of water pollution 22 Eutrophication and algal blooms			
	16	Small scale water purification		
IV	Food	and water borne diseases	12 systems I Fungi 12 S , Viruses and on, freezing, 12	20
	17	Bacterial water borne diseases		
	18	Viral waterborne diseases		
	19	Protozoal waterborne diseases		
	20	Microbial Water analysis- MPN		
	21	Microbial indicators of water pollution		
	22	Eutrophication and algal blooms		
V	Open	Ended	12	
	1	Laboratory analysis of fermented and spoiled food		
		samples and water samples from different sources.		

- 1. Doyle, M. P. (2019). *Food microbiology: Fundamentals and frontiers* (5th ed.). ASM Press.
- 2. Mara, D., & Horan, N. J. (Eds.). (2003). *Water microbiology: Bacterial pathogens and waterborne diseases*. Elsevier.
- 3. Glibert, P. M., & Church, T. M. (2013). *Aquatic microbial ecology and biogeochemistry: A dual perspective*. Springer.
- 4. Bhunia, A. K., & Bhola, N. R. C. (2018). *Food microbiology*. McGraw-Hill Education.

- 5. Rai, R. C. (2016). *Fundamentals of microbiology and immunology*. Kalyani Publishers.
- 6. Baveja, C. P. (2019). Textbook of microbiology (5th ed.). Arya Publications.
- 7. Yayaver, H. S., Singh, B. K., & Singh, A. P. (2017). Microbial ecology. Springer.
- 8. Agarwal, G. P., & Agarwala, S. K. (2015). *Textbook of environmental microbiology*. Universities Press.
- 9. Erkmen, O., & Bozoglu, T. F. (Eds.). (2016). *Food microbiology: Principles into practice*. Wiley-Blackwell.
- 10. Percival, S. L., & Embrey, M. (Eds.). (2004). *Microbiology of waterborne diseases: Microbiological aspects and risks*. Elsevier.

CO	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	
CO5		1	2	3				1	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark

MBY5EJ306 (3) FOOD QUALITY ASSURANCE

Programme	B. Sc. Microbiology						
Course Code	MBY5EJ306 (3)						
Course Title	Food Quality Assurar	nce					
Type of Course	Major-Elective						
Semester	V						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course provides	a comprehe	ensive overvi	iew of the pr	inciples and		
Summary	practices of food quality assurance. It covers the importance of food						
	safety, different types of food hazards, regulatory standards, quality						
	management systems	, and the im	pact of emer	ging technolo	gies in food		
	quality assurance.						

Course Outcomes (CO):

4

СО	CO Statement	Cognitive	Knowledge	Evaluation			
		Level*	Category#	Tools used			
CO1	Understand the fundamentals of food quality assurance and its impact on public health and consumer trust.	U	F	Internal Exam, Assignments, End Semester Exam			
CO2	Identify various food hazards and implement effective mitigation strategies.	U	С	Internal Exam, Assignments, End Semester Exam			
CO3	Analyze food standards and regulatory requirements to ensure compliance in the food industry.	An	F	Internal Exam, Assignments, End Semester Exam			
CO4	Implement and manage quality systems in the food industry to enhance food safety and quality.	Ap	F	Internal Exam, Assignments, End Semester Exam			
CO5	Evaluate the role of ISO certifications and integrate quality management principles for business success.	An	С	Internal Exam, Assignments, End Semester Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

÷

.

Detailed Syllabus:

-

Module	Unit Content		Hrs	Marks
			(48+12)	(70)
Ι	Introd	uction to Food Quality Assurance:	12	15
	1	Definition and scope of food quality assurance.		
		Importance of maintaining food quality and safety		
	2	Impact on public health and consumer trust, Historical		
		milestones in food quality assurance, Evolution of food		
		safety standards globally		
	3	Fundamental principles of food quality assurance		
		(prevention, detection, control)		
	4	Objectives of ensuring food safety, quality, and		
		consistency, Relationship between food quality assurance		
		and overall business success		
II	Food H	lazardous Materials:	12	15
	5	Definition of food safety and concept of safe food.		
	6	Types of Food Hazards: Chemical hazards: Naturally		
		occurring chemical hazards (toxins and antinutritional		
		factors) in foods,		
	7	Unintentional Chemicals (Pesticides, Fertilizers,		
		Pollutants), Toxic metals (Lead, Cadmium, Mercury,		
		Aluminium and Arsenic), and Intentional Chemicals		
		(Food preservatives Food additives).		
	8	Biological hazards (pathogens, toxins), Physical hazards		
	(foreign objects, Glass, Wood, Stones, Metal Fragments,			
		Insulation Materials, Plastic and Bones).		
	9	Sources of Food Hazards: Natural sources		
		(microorganisms, toxins), Environmental sources		
		(pollution, cross-contamination)		
	10	Human-induced sources (poor hygiene, improper		
		handling). Mitigation and Control Measures for Food		
		Hazards.		
III	Food S	tandards and Regulations:	14	25
	11	Role of Food Standards in Ensuring Safety and Quality		
	12	International Food Standards Organizations (Codex		
		Alimentarius, ISO)		
	13	Indian Food Laws and Regulations: Food Safety and		
		Standards Act, 2006		
	14	Indian Food Laws and Regulations: Food Safety and		
		Standards (Licensing and Registration of Food Businesses)		
		Regulations, 2011		
	15	Roles and Responsibilities of Food Safety and Standards		
		Authority of India (FSSAI)		
	16	Role of Regulatory Authorities: Inspections, Audits, and		
		Enforcement of Food Regulations		

	17	Compliance Requirements for Food Businesses		
IV	Quality	Management Systems in Food Industry:	10	15
	18	Introduction to Quality Management Systems (QMS)		
	19	Principles of Total Quality Management (TQM) in the		
		Food Industry		
	20	Components of QMS: Policies, Procedures, and		
		Documentation Requirements		
	21	Hazard Analysis Critical Control Points (HACCP)		
		Principles and Implementation Steps		
	22	Good Manufacturing Practices (GMP) and Their		
		Importance in Ensuring Food Safety and Quality		
V	Open	ended	12	
		Recent advancements in Food Quality Assurance		
		Technologies, Rapid detection methods for food pathogens		
		and contaminants, Smart packaging technologies for food		
		safety, and shelf-life extension. Case Study of any food		
		safety incidents and recalls.		

- 1. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 2. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company
- 3. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 4. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J., 1995. Scientific American Books.
- 7. Biochemistry by Stryer L., 1995. W.H. Freeman and company.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S. Old and S.B.Primrose. 1989.Blackwell Scientific Publications, London.
- 10. Alcamo IE. (2001). DNA Technology: The Awesome Skill. 2nd edition. Elsevier Academic Press,
- 11. Brown TA. (2006). Gene Cloning and DNA Analysis. 5th edition. Blackwell Publishing, Oxford,
- 12. Glick BR and Pasternak JJ. (2003). Molecular Biotechnology. 3rd edition. ASM PressWashington D.C.
- 13. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7thedition. Blackwell Publishing, Oxford, U.K.
- 14. Sambrook J, Fritsch EF and Maniatis T. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.

СО	PS 01	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1		2	
CO2	2	3		1			2	3	2	1	3	
CO3	1		3	2			1		3	2	2	1
CO4		1	2	3				2		3	1	2
CO5				3	2	1		1	2		3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

-

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

MBY5EJ 307. ENZYMOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY5EJ 307						
Course Title	Enzymology						
Type of Course	Major-Elective						
Semester	V						
Academic Level	300 - 399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4		-	60		
Pre-requisites	Nil						
Course	This Elective course	covers Enzy	mology with	introduction	to enzymes,		
Summary	enzyme classification, enzyme kinetics, factors influencing enzyme						
	activity, enzyme substrate interactions, regulation of enzyme activity,						
	industrial application	of enzymes,	and advance	s in enzyme to	echnology		

Course Outcomes (CO):

÷.

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Understand fundamental concepts and classifications of enzymes.	U	С	Internal Exam, End Semester Exam			
CO2	Analyse catalytic mechanisms and enzyme kinetics.	An	С	Internal Exam, End Semester Exam			
CO3	Apply knowledge of enzymology to industrial processes.	Ар	F	Internal Exam, End Semester Exam			
CO4	Evaluate recent advancements in enzyme technology.	E	С	Internal Exam, End Semester Exam			
CO5	Demonstrate analytical skills in solving enzymology-related problems.	Ар	F	Internal Exam, End Semester Exam			
CO6	Critically discuss the role of enzymes in clinical diagnostics and therapy.	An	F	Internal Exam, End Semester Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

.

.
Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Introd	uction to enzymes and Brief history to enzymology	10	15
	1	Enzyme–IUB-Nomenclature, Classification, Enzyme		
		kinetics - Michaelis-Menten equation, Lineweaver Burk		
		plot		
	2	Catalytic power and specificity: Optical, geometrical,		
		absolute, group, bond specificities, Active site		
	3	non-protein cofactors and co-enzymes - NAD,		
		NADP+,FAD, FMN, TPP, CoA and pyridoxal		
		phosphate. Roles of cofactors and coenzymes in enzyme		
		action,		
	4	Reversible inhibition - Competitive, non competitive,		
		uncompetitive inhibition - with examples. Irreversible		
		inhibition with examples, Antibiotic inhibitors of		
		enzymes- penicillin, sulfa drugs, methotrexate etc.		
		Inhibitors as tools in biochemical studies,		
	5	Factors affecting enzyme activity		
II	Enzyı	ne-substrate interactions	12	15
	6	Lock and Key hypothesis; Induced fit hypothesis,		
		Mechanism of enzyme catalysis- Acid-base catalysis,		
		Covalent catalysis, Metal ion catalysis, Electrostatic		
	_	catalysis		
	7	Allosteric / Regulatory enzymes: Allosteric activation		
		and inhibition		
	8	Regulation of enzyme activity - Feed back regulation,		
		Zymogens, covalent modification, I ranscriptional		
	0	regulation, hormone mediated regulation		
	9	Isoenzymes (LDH, Creatine kinase) and Multi-enzyme		
TTT	Indua	complex.	12	20
111		Industrially important missibil any mas	13	20
	10	Genetically medified anywas		
	11	Durification of any magnetic fractional proginitation		
	12	dialysis isoalactria precipitation		
	13	Durification of anzymes chromatography ion		
	15	exchange and gel filtration chromatography		
	14	HPLC PAGE		
	15	Enzymes of clinical importance		
IV	Adva	nces in Enzyme technology	12	20
- '	17	Advances in Enzyme technology		
	18	Immobilized enzymes		
	19	Abzymes		
	19 20	Abzymes Enzyme engineering		

	22	Application-based assignments on recent advancements in enzymology.		
V	Open	ended	12	
	1	Assignments/Seminars on the above topics		
	2	Demonstration of immobilized enzyme preparation		
	3	Demonstration of microbial synthesis of enzymes		

- 1. Nelson, D. L. and Cox, M.M. Lehninger Principles of Biochemistry, 6th Edition,
- 1. W.H.Freeman and Company, N.Y., USA.
- 2. Palmer, T. Understanding Enzymes Ellis Horwood Limited, Third Edition. 1991
- 3. Palmer, T and Bonner, P. Enzymes: Biochemistry, Biotechnology, Clinical Chemistry
- 4. Publisher: Horwood Publishing Limited.
- 5. Stryer, L. Biochemistry Pub.W.H.Freeman
- 6. Voet, D. and. Voet, J. G, Biochemistry, 4th Edition, John Wiley & sons Inc. New York
- 7. Walsh, G. Protein Biochemistry and Biotechnology, John Wiley and Sons Ltd.2002.
- 8. West E.S., W.R. Todd, H.S. Mason and J.T. Van Bruggen Text Book of Biochemistry: Oxford & IBH publishing Co-Pvt. Ltd.

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3		1		2	
CO2	2	3					2	3	2		3	
CO3		2	3		1		1	3	3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	
CO6	2			3						3	3	3

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
 - Continuous Assessment (30%)
 - End semester Exam (70%)

	Internal Exam	Assignment	Project	End Semester Examinations
			Evaluation	
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			\checkmark

MBY6EJ 301(1). APPLICATIONS OF rDNA TECHNOLOGY 1

Programme	B. Sc. Microbiology				
Course Code	MBY6EJ 301(1)				
Course Title	Applications of rDN	A technolog	y 1		
Type of Course	Major-Elective				
Semester	VI				
Academic Level	300-399				
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours
		per week	per week	per week	
	4	4	-	-	60
Pre-requisites	Nil				
Course	This course delves i	nto the prac	tical applica	tions of recor	mbinant DNA
Summary	technology in various	fields includ	ing biotechno	ology, medicin	ne, agriculture,
	and environmental so	ciences. The	focus is on	the methodo	logies of gene
	cloning, production of	of recombina	int proteins,	and the ethic	al, safety, and
	regulatory aspects of	biotechnolog	gy.		

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Design and execute gene cloning strategies for protein production.	Ap	F	Assignments, End Semester Exam
CO2	Develop recombinant proteins using eukaryotic systems and analyze their applications.	Ap	С	Assignments, End Semester Exam
CO3	Implement gene cloning techniques in agriculture for crop improvement.	Ap	С	Assignments, End Semester Exam
CO4	Address safety, ethical, and regulatory issues associated with GMOs.	An	С	Assignments, End Semester Exam
CO5	Evaluate the impact of genetic engineering on ecosystems and food security.	Е	С	Assignments, End Semester Exam
* - Re	emember (R), Understand (U), Apply (Ap)), Analyse (A	n), Evaluate (E), Create $\overline{(C)}$
# - Fa	ctual Knowledge(F) Conceptual Knowled	ge (C) Procee	dural Knowledg	ge (P)
Meta	cognitive Knowledge (M)			

.

Detailed Syllabus:

÷

Modu le	Unit	Content	Hrs 48-12	Mar ks
				(70)
Ι	Gene	cloning and DNA analysis in Biotechnology	12	20
	1	Production of protein from cloned genes in bacteria		
	2	Importance of promoter in gene expression		
	3	Examples of important promoter used for expression vector		
	4	Cassettes and gene fusion		
	5	Problems encountered with cloning in bacteria		
	6	Problems of heterologous gene expression		
II	Produ	ction of recombinant proteins in eukaryotic cells	12	20
	8	Production of recombinant proteins in eukaryotic cells - filamentous fungi		
		Production of recombinant proteins in eukaryotic cells -yeast		
	9	Using animal cells for recombinant protein production		
		(mammalian and insect)		
	10	Pharming recombinant protein from animals		
	11	Pharming recombinant protein from plants		
	12	Ethical concerns raised by pharming		
III	Gene	cloning and DNA analysis in Agriculture	12	20
	13	Gene manipulations in insecticide development		
	14	Manipulations to develop herbicides in plants		
	15	Gene subtraction studies - antisense RNA in plant ripening		
	16	Use of antisense RNA in polygalacturonase gene		
	17	Use of antisense RNA in inactivating ethylene synthesis		
IV	Proble	ems related to genetically modified plants	12	10
	18	Safety concerns with selectable markers		
	19	The terminator technology		
	20	The possibility of harmful effects on the environment		
	21	Public perception and legal issues related to GMOs		
	22	Future directions in genetically modified crops		
V	Open	ended	12	
	1			
		1	1	L

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (7th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2013). *Principles of Gene Manipulation and Genomics* (8th ed.). Wiley-Blackwell.
- 3. Dale, J. W., & von Schantz, M. (2015). From Genes to Genomes: Concepts and Applications of DNA Technology (3rd ed.). Wiley.
- 4. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 5. Russell, P. J. (2014). *iGenetics: A Molecular Approach* (3rd ed.). Benjamin Cummings.
- 6. Miesfeld, R., & McEvoy, M. (2017). *Biochemistry and Molecular Biology: How Life Works* (1st ed.). W. H. Freeman.

СО	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	
CO2	2	3		1			2	3	2	1	3	
CO3	1		3	2		1	1		3	2	2	1
CO4		2		3	1			3		3	1	2
CO5			2		3	1			3		3	3

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignments	End Semester Exam
CO1	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark

Programme	B. Sc. Microbiology						
Course Code	MBY6EJ 302(1)						
Course Title	Applications of rDNA	A technology	II				
Type of Course	Major-Elective						
Semester	VI						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course further e	explores the	practical app	plications of	recombinant		
Summary	DNA technology in	fields such	as medicin	e, forensic s	science, and		
	archaeology, empl	archaeology, emphasizing the production of recombinant					
	pharmaceuticals, ger	ne therapy,	forensic DN	VA analysis,	and ethical		
	considerations.						

MBY6EJ 302(1). APPLICATIONS OF rDNA TECHNOLOGY II

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Demonstrate comprehensive knowledge of the applications of genetic engineering in producing recombinant pharmaceuticals.	С	С	Assignments, End Semester Exams
CO2	Understand the development and application of diagnostic tools and recombinant vaccines in medical biotechnology.	U	С	Assignments, Lab Reports
CO3	Analyze the ethical, social, and scientific implications of gene therapy in medicine.	An	С	Midterm Exams, Assignments
CO4	Apply DNA analysis techniques to forensic challenges, enhancing skills in genetic profiling and kinship analysis.	Ap	F	Instructor- Created Exams, Quizzes
CO5	Evaluate the integration of rDNA technology in archaeological studies to trace historical human migrations and ancient diseases.	E	С	Case Studies, Internal Exam
* - Re # - Fa Metao	emember (R), Understand (U), Apply (Ap) actual Knowledge(F) Conceptual Knowled cognitive Knowledge (M)), Analyse (A ge (C) Procee	n), Evaluate (E dural Knowledg), Create (C) ge (P)

÷

.

Detailed Syllabus:

•

Module	Unit	Content	Hrs (48-12)	Marks (70)
Ι	Applic	cations of genetic engineering in Research	12	15
	1	To study the RNA transcript of a gene		
	2	Studying the regulation of gene expression		
	3	Identifying the control sequences by deletion analysis		
	4	Reporter genes		
	5	Identifying and studying the translation product of a cloned		
		gene		
	6	Use of HRT and HART		
	7	Analysis of protein by invitro mutagenesis		
II	Study	ing genomes	12	20
	8	Genome annotation in a genome sequence		
	9	Determining the function of unknown gene		
	10	Studying the transcriptome		
	11	Studying the proteome		
	12	Studying the protein protein interactions		
III	Applic	cations of genetic engineering in medicine	12	20
	13	Production of recombinant pharmaceuticals- insulin,		
	14	Synthesis of growth hormone		
	15	Diagnosis and Gene therapy for human disease		
	16	Recombinant Vaccine		
	17	Ethical issues raised by gene therapy		
IV	Gene	cloning and DNA analysis in forensic science	12	15
	18	DNA analysis in identification of crime suspects		
	19	Studying kinship by DNA profiling		
	20	Sex determination by DNA analysis		
	21	Use of DNA profiling to trace missing children		
	22	Study of prehistoric human migrations		
V	Open	ended	12	
	1			

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (7th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2013). *Principles of Gene Manipulation and Genomics* (8th ed.). Wiley-Blackwell.
- 3. Dale, J. W., & von Schantz, M. (2015). From Genes to Genomes: Concepts and Applications of DNA Technology (3rd ed.). Wiley.
- 4. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 5. Russell, P. J. (2014). *iGenetics: A Molecular Approach* (3rd ed.). Benjamin Cummings.
- 6. Miesfeld, R., & McEvoy, M. (2017). *Biochemistry and Molecular Biology: How Life Works* (1st ed.). W. H. Freeman.

СО	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1		2		3	1	2		2	
CO2	2	3		1	3		2	3	2	1	3	
CO3	1	2	3			1	1	3	3	2	2	1
CO4		3		3				3		3		2
CO5	2		3		3			1	2	3	3	3

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignments	End Semester Examinations
CO1	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	
CO4	\checkmark		\checkmark
CO5	\checkmark		

Programme	B. Sc. Microbiology				
Course Code	MBY6EJ303 (2)				
Course Title	Diagnostic Microbiology				
Type of Course	Major-Elective				
Semester	VI				
Academic Level	300-399				
Course Details	Credit 4	Lecture per week 4	Tutorial per week -	Practical per week -	Total Hours 60
Pre-requisites	Nil				
Course Summary	This course provides a com microbiology, covering fundamen practical applications in healthcar importance of diagnostic microbi- health, laboratory design and bio culture systems, rapid antigen tests and phenotypic testing of microbia is placed on understanding labo troubleshooting common issues, principles in clinical practice.	nprehensiv tal princip e settings. iology in osafety con s, advance al antimic oratory tec and apply	e overvie les, advan Students disease dinsideration d antibody obial susc chniques, ying diagr	ew of d ced technic will learn a iagnosis an s, automat detection eptibility. I interpreting nostic micr	iagnostic jues, and about the id public ed blood methods, Emphasis g results, obiology

MBY6EJ 303 (2). DIAGNOSTIC MICROBIOLOGY

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation
00	CO Statement	StatementCognitive Level*Knowledge Category#nificance of diagnostic healthcare and public ng its role in disease agement.UCsign and structure of obiology laboratories, les of biosafety and ensure safe laboratoryUCtion and interpretation of culture systems and rapid or microbial detection, importance in diagnosingUC	Tools used	
CO1	Explain the significance of diagnostic microbiology in healthcare and public health, emphasizing its role in disease diagnosis and management.	U	С	Quizzes, Midterm Exam
CO2	Identify the design and structure of diagnostic microbiology laboratories, applying principles of biosafety and biosecurity to ensure safe laboratory practices.	U	С	Quizzes, Assignments
CO3	Describe the operation and interpretation of automated blood culture systems and rapid antigen tests for microbial detection, highlighting their importance in diagnosing infectious diseases.	U	С	Assignments, Final Exam

CO4	Understand advanced antibody detection methods such as ELISA and immunoblotting, interpreting results accurately to aid in disease diagnosis.	U	Р	Midterm Exam, Final Exam
CO5	Conduct phenotypic testing of bacterial antimicrobial susceptibility and interpret findings contributing to effective treatment strategies and antimicrobial stewardship efforts.	Ap	Р	Assignments, Final Exam

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Mod	Unit	Content	Hrs	Marks
ule			(48+12)	(70)
Ι	Introd	uction to Diagnostic Microbiology	10	15
	1	Overview of diagnostic microbiology and its		
		significance in healthcare		
	2	Role and importance of diagnostic microbiology		
		laboratories		
	3	Principles of biosafety and biosecurity in diagnostic		
		microbiology		
	4	Laboratory design considerations for diagnostic		
		microbiology facilities		
	5	Equipment and instrumentation used in diagnostic		
		microbiology laboratories		
II	Autom	ated Blood Culture	10	15
	6	Principles of blood culture and its importance in		
		diagnosing bloodstream infections		
	7	Overview of automated blood culture systems		
	8	Operation and maintenance of automated blood culture		
		instruments		
	9	Interpretation of blood culture results and identification		
		of microbial pathogens		
	10	Troubleshooting common issues in automated blood		
		culture systems		

III	Rapid	Antigen Test	18	25
	11	Introduction to rapid antigen tests for microbial detection		
	12	Principles of antigen-antibody interactions in rapid		
		antigen tests		
	13	Techniques for performing rapid antigen tests		
	14	Interpretation of rapid antigen test results		
	15	Applications of rapid antigen tests in diagnostic microbiology		
	16	Limitations of rapid antigen tests in diagnostic microbiology		
IV	Advan	ced Antibody Detection and Phenotypic Testing	10	15
	17	Principles and applications of advanced antibody		
		detection methods		
	18	Techniques for performing enzyme-linked		
		immunosorbent assay (ELISA)		
	19	Immunoblotting techniques		
	20	Phenotypic testing of bacterial antimicrobial susceptibility		
	21	Introduction to biochemical profile-based microbial identification systems		
	22	Interpretation of phenotypic testing results and their clinical significance		
V	Open e	ended	12	
		Discuss the advantages and disadvantages of different		
		diagnostic techniques		

- 1. Tille, P. (Ed.). (2017). Bailey & Scott's diagnostic microbiology (14th ed.). Elsevier.
- 2. Mahon, C. R., & Manuselis, G. (2014). *Textbook of diagnostic microbiology* (5th ed.). Saunders.
- 3. Kiser, K., Payne, W. C., & Taff, T. (2011). *Clinical laboratory microbiology: A practical approach* (1st ed.). Pearson.
- 4. Sastry, A. S., & Bhat, S. (2018). *Essentials of medical microbiology* (2nd ed.). Jaypee Brothers Medical Publishers.
- 5. Ananthanarayan, R., & Paniker, C. K. J. (2017). *A textbook of microbiology* (10th ed.). Universities Press.
- 6. Gladwin, M., & Trattler, B. (2013). *Clinical microbiology made ridiculously simple* (6th ed.). MedMaster Inc.
- 7. Chakraborty, R., & Mandal, S. C. (2015). *A concise textbook of microbiology* (1st ed.). CBS Publishers & Distributors.
- 8. Dubey, R. C. (2014). Practical microbiology (4th ed.). S. Chand Publishing.
- 9. Wright, W. F., & LeClair, A. C. (2020). *Essentials of clinical infectious diseases* (1st ed.). Springer.
- 10. Parish, C. R. (2015). Diagnostic microbiology: Test yourself (1st ed.). Wiley.

СО	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	
CO5		1	2	3				1	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	\checkmark		\checkmark
CO2	\checkmark	\checkmark	
CO3		\checkmark	\checkmark
CO4	\checkmark		\checkmark
CO5		\checkmark	\checkmark

MBY6EJ 304(2)-ADVANCED DIAGNOSTIC TECHNIQUES IN MICROBIOLOGY

Programme	B. Sc. Microbiology				
Course Code	MBY6EJ304(2)				
Course Title	Advanced Diagnostic	c Techniques	in Microbio	logy	
Type of Course	Major-Elective				
Semester	VI				
Academic Level	300-399				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Nil				
Course	This course provides	s an in-dept	h exploration	n of advance	d molecular
Summary	techniques used in di	agnostic mic	robiology. To	opics include	probe-based
	microbial detection,	nucleic acid	amplificatio	n, molecular	diagnostics,
	and automation in mi	crobiology. S	Students will	gain hands-or	n experience
	with techniques such	as real-time	PCR, PFGE	, ELISA, and	microarray-
	based molecular iden	tification. Er	nphasis is pla	aced on under	standing the
	principles, application	ons, and in	terpretation	of these te	chniques in
	diagnosing infectious	diseases and	controlling a	antimicrobial	therapy.

Course Outcomes (CO):

4

СО	CO Statement	Cognitiv e Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles and applications of probe-based microbial detection techniques in diagnostic microbiology.	U	С	Assignments, Quizzes, Midterm Exam
CO2	Explain the fundamentals of nucleic acid amplification techniques, including PCR and real-time PCR, and their applications in microbial diagnostics.	U	С	Assignments, Quizzes, Midterm Exam
CO3	Analyze and interpret data from advanced molecular techniques such as PFGE, ELISA, and microarray-based molecular identification.	An	С	Assignments, Quizzes, Midterm Exam
CO4	Evaluate the role of molecular diagnostics in detecting drug resistance and characterizing microbial pathogens.	E	С	Assignments, Quizzes, Midterm Exam
CO5	Integrate advanced diagnostic techniques into clinical practice and public health interventions to improve patient care and disease management.	Ар	F	Assignments, Quizzes, Midterm Exam
* - Re # - Fa Metac	emember (R), Understand (U), Apply (Ap), A ctual Knowledge(F) Conceptual Knowledge cognitive Knowledge (M)	Analyse (An (C) Procedu), Evaluate (E) 1ral Knowledg	, Create (C) e (P)

Detailed Syllabus:

-

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι	Probe	e-Based Microbial Detection and Nucleic Acid	10	15
	Ampl	ification		
	1	Principles of probe-based microbial detection	1	
	2	Applications of probe-based microbial detection	7	
	3	Overview of invitro nucleic acid amplification techniques	1	
	4	Polymerase chain reaction (PCR) fundamentals		
	5	Real-time PCR principles and applications		
	6	Introduction to Pulsed-Field Gel Electrophoresis (PFGE)		
	7	Principles and applications of bDNA signal amplification		
		technique		
II	Moleo	cular Techniques in Diagnostic Microbiology	10	15
	8	Introduction to agarose gel electrophoresis	1	
	9	Applications of agarose gel electrophoresis in diagnostic	1	
		microbiology		
	10	Techniques and interpretation of Southern blot	1	
		hybridization		
	11	Principles and applications of enzyme-linked immunoassay	1	
		(ELISA)		
	12	Microarray-based molecular identification techniques		
	13	Interpretation of microarray-based molecular identification		
		results		
III	Adva	nced Molecular Diagnostics	18	25
	14	Diagnostic microbiology using real-time PCR based on FRET technology	2	
	15	Advances in the diagnosis of Mycobacterium tuberculosis	4	
	16	Principles and applications of drug resistance detection in	3	
	10	Mycobacterium tuberculosis	U	
	17	Molecular strain typing using repetitive sequence-based	3	
		PCR (rep-PCR)		
	18	Automation in microbiology: principles and applications	3	
	19	Laboratory control of antimicrobial therapy: techniques and		
		considerations		
IV	Appli	cation and Integration	10	15
	20	Case studies in probe-based microbial detection and nucleic	2	
		acid amplification		
	21	Practical applications of molecular techniques in diagnostic	2	
		microbiology		
	22	Integration of advanced molecular diagnostics into clinical	2	
		practice and public health interventions		

V	Open	ended	12	
		Emerging Infectious Diseases: Exploration of recent outbreaks and their impact on global health.		
		Innovations in Healthcare Technology: Advancements in medical devices, telemedicine, and digital health solutions.		

- 1. Dicker, R., et al. (2006). *Principles of Epidemiology in Public Health Practice* (3rd ed.). CDC.
- 2. Tille, P. (Ed.). (2017). Bailey & Scott's Diagnostic Microbiology (14th ed.). Elsevier.
- 3. Mahon, C. R., & Manuselis, G. (2014). *Textbook of Diagnostic Microbiology* (5th ed.). Saunders.
- 4. Kiser, K., Payne, W. C., & Taff, T. (2011). *Clinical Laboratory Microbiology: A Practical Approach* (1st ed.). Pearson.
- 5. Sastry, A. S., & Bhat, S. (2018). *Essentials of Medical Microbiology* (2nd ed.). Jaypee Brothers Medical Publishers.
- 6. Ananthanarayan, R., & Paniker, C. K. J. (2017). *A Textbook of Microbiology* (10th ed.). Universities Press.
- 7. Gladwin, M., & Trattler, B. (2013). *Clinical Microbiology Made Ridiculously Simple* (6th ed.). MedMaster Inc.
- 8. Chakraborty, R., & Mandal, S. C. (2015). *A Concise Textbook of Microbiology* (1st ed.). CBS Publishers & Distributors.
- 9. Dubey, R. C. (2014). Practical Microbiology (4th ed.). S. Chand Publishing.
- 10. Wright, W. F., & LeClair, A. C. (2020). *Essentials of Clinical Infectious Diseases* (1st ed.). Springer.
- 11. Parish, C. R. (2015). Diagnostic Microbiology: Test Yourself (1st ed.). Wiley.
- 12. Somerville, M., & Kumaran, K. (2012). *Public Health and Epidemiology at a Glance*. Wiley-Blackwell.

CO	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	
CO5		1	2	3				1	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

-

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination		
CO1	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark		
CO3	\checkmark	\checkmark	\checkmark		
CO4	\checkmark	\checkmark	\checkmark		
CO5	\checkmark	\checkmark	\checkmark		

MBY6EJ 305 (3). LABORATORY TECHNIQUES FOR FOOD AND WATER ANALYSIS

		11		5							
Prog	ramme	B. Sc. Microbiology									
Cour	se Code	MBY6EJ 305 (3)									
Cour	se Title	Laboratory techniques	for food a	and water an	alysis						
Туре	e of Course	Major-Elective									
Seme	ester	VI									
Acad	lemic Level	300-399									
Cour	se Details	Credit	Lecture	Tutorial	Practical	Total					
		1	per week	per week	per week	Hours					
		4	4	-	-	60					
Pre-r	requisites	Nil									
Cour Sum	rse mary	This course provides a detailed study of laboratory techniques used for the analysis of food and water. It covers good laboratory practices,									
		equipment nandling, sterilization methods, staining techniques, microscopy, culture media preparation, food and water sampling, and analysis. Advanced analytical techniques such as mass spectrometry, UV-visible spectrometry, chromatography, and PCR are also discussed. The course emphasizes quality assurance and safety protocols in laboratory practice.									
Cours	se Outcomes	S (CO):		~ · ·	•• • • •						
СО	CO Stateme	ent		Cognitive	Knowledge	Evaluation Tool					
CO1	Understand laboratory and steriliza	the principles of practices, equipment hation methods.	good andling,	U	Category#	Assignments, Quizzes, Midterm Exam					
CO2	Explain the microscopy used in food	ne techniques for so , and culture media prep l and water analysis.	taining, paration	U	С	Assignments, Quizzes, Midterm Exam					
CO3	Analyze me physical, an food and wa	ethods for sampling, ch nd microbiological anal ater.	emical, lysis of	An	С	Assignments, Quizzes, Midterm Exam					
CO4	Understand techniques UV-visible and PCR in	and apply advanced an such as mass spectro spectrometry, chromato food and water analysis	alytical ometry, graphy,	Ap	F	Assignments, Quizzes, Midterm Exam					
CO5	Implement control mea ensuring rel	quality assurance and sures in laboratory proc iability and validity of r	quality cedures, results.	Ар	Assignments, Quizzes, Midterm Exam						
* - Re # - Fa Know	emember (R) actual Knowl rledge (M)	, Understand (U), Apply edge(F) Conceptual Kno	y (Ap), An owledge (alyse (An), l (C) Procedur	Evaluate (E), C al Knowledge	Create (C) (P) Metacognitiv					

Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Intro	duction to laboratory practices	12	10
	1	Good laboratory practices		
	2	Basic laboratory equipments		
	3	Sterilization methods		
	4	Staining methods		
	5	Microscopy and types		
	6	Culture media and types		
II	Food	and water analysis	12	20
	7	Food sampling qnd preparation of samples		
	8	Basic Principles of Classical Methods of food analysis		
	9	Chemical methods of analysis		
	10	Physical methods of analysis		
	11	Microbiological methods of analysis		
III	Basic	Laboratory protocols	12	20
-	12	Direct microscopic examination of food		
	13	Detection of pathogens from food and water		
	14	Enumeration of microbes by Aerobic plate count		
	15	Methods of detection of pathogens and toxins		
	16	Detection of coliforms and indicator organisms		
	17	Evaluation of microbial quality of water by MPN		
		technique and membrane filtration technique		
IV	Adva	nced Analytical techniques	12	20
	18	Instrumentation and Princple of Mass spectrometry		
	19	UV-Visible and Fluorescence Spectrometry		
	20	Liquid and Gas Chromatography		
	21	Nuclear Magnetic Resonance spectroscopy		
	22	Polymerase chain reaction		
V	Open	Ended	12	
	1	Visit food and water testing laboratories		
	2	Familiarise with standard procedures used in food and		
		water testing laboratories		
	3	Policies on food security and food safety		

- 1. Nielsen, S. S. (Ed.). (2017). Food analysis (5th ed.). Springer.
- 2. Nielsen, S. S. (2010). Principles of food analysis: For filth adulteration, pesticides, and marine toxins. Springer.
- 3. Murthy, P. S. (2015). *Analytical techniques in food safety: A laboratory manual.* John Wiley & Sons.

- 4. Rao, V. R. S., & Narayanan, S. S. (2018). *Food analysis*. CBS Publishers & Distributors.
- 5. Nielsen, S. S., & Almeida, L. M. S. F. (2018). Handbook of food analysis. CRC Press.
- 6. Krishnamoorthy, G. (2016). *Food safety analysis: Biosensor based approaches*. Springer.
- 7. Salvi, D. N. (2014). Practical food microbiology and technology. Springer.
- 8. Qader, N., & Rajan, R. (2017). *Microbiological examination methods of food and water: A laboratory manual*. CRC Press.
- 9. Young, A. H. (2015). *Analytical chemistry in a GMP environment: A practical guide*. John Wiley & Sons.
- 10. Ananthanarayan, R., & Paniker, C. K. J. (2017). *Practical microbiology and analytical techniques*. Universities Press.

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	
CO5		1	2	3				1	2	3	1	2

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark

MBY6EJ306 (3)-FOOD AND WATER BORNE DISEASES

Programme	B. Sc. Microbiology								
Course Code	MBY6EJ306 (3)								
Course Title	Food and water borne diseases								
Type of Course	Major-Elective	Major-Elective (1997)							
Semester	VI								
Academic Level	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4 4 60							
Pre-requisites	Nil								
Course	This course provides	an overview	of the micro	bial pathogen	is and toxins				
Summary	associated with food	and water	borne disea	ases, their ep	oidemiology,				
	transmission routes,	clinical man	nifestations,	diagnosis, tre	atment, and				
	prevention strategies	. Emphasis	will be place	ed on under	standing the				
	microbiological, epid	lemiological,	and public h	nealth aspects	of food and				
	water borne diseases.								

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation						
		Level*	Category#	Tools used						
CO1	Understand the etiology, epidemiology, and transmission routes of common food and water borne pathogens.	R	F	Quizzes, Assignments						
CO2	Recognize the clinical manifestations, diagnostic methods, and treatment options for food and water borne diseases.	U	С	Midterm Examination						
CO3	Evaluate the role of food safety measures, water sanitation practices, and public health interventions in preventing food and water borne illnesses.	Е	F	Quizzes, Assignment, Case Study Analyses						
CO4	Analyze case studies and outbreaks of food and water borne diseases to identify contributing factors and recommend control measures.	An	F	Assignment, Quizzes, Midterm Examinations						
CO5	Develop effective communication skills for disseminating information on food and water safety practices to the public.	Ар	М	Assignment, Quizzes, Midterm Examinations						
* - Re # - Fa Know	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)									

.

Module	Unit	Content	Hrs (48+12)	Marks
I	Intro	duction to Food and Water Borne Diseases	12	10
-	1	Definition, scope, and significance of food and water borne	12	10
	-	diseases		
	2	Historical perspectives and major outbreaks of food and		
	2	Fridemiology of food and water home discosses alabel		
	3	burden and trends		
	4	Routes of transmission: foodborne, waterborne, and fecal- oral transmission		
	5	Factors influencing the incidence and spread of food and water borne diseases		
	6	Surveillance systems and outbreak investigations of food		
п	Micro	and water come innesses	12	2.0
11	7	Bacterial pathogens: Salmonella Escherichia coli	12	20
	8	Bacterial pathogens: Campylobacter, Listeria, Vibrio, etc.		
	9	Viral pathogens: Norovirus, Hepatitis A virus, Rotavirus,		
		etc.		
	10	Parasitic pathogens: Giardia, Cryptosporidium, Entamoeba, etc.		
	11	Toxigenic pathogens: Clostridium botulinum, Staphylococcus aureus, Bacillus cereus, etc.		
III	Clini	cal Manifestations and Diagnosis	12	20
	12	Gastrointestinal symptoms: diarrhea, vomiting, abdominal		
	13	Extraintestinal manifestations: hepatitis, meningitis,		
	14	Laboratory methods for detecting food and water borne pathogens: culture serological		
	15	Laboratory methods for detecting food and water borne pathogens: molecular methods		
IV	Treat	tment. Prevention and Control Strategies	12	20
	16	Antimicrobial therapy for bacterial infections		
	17	Supportive care and fluid replacement therapy		
	18	Prevention of complications and sequelae associated with food and water borne diseases		
	19	Food safety practices: Hazard Analysis Critical Control Points (HACCP), Good Hygiene Practices (GHP), etc.		
	20	Water sanitation measures: chlorination, filtration, boiling, etc.		
	21	Public health interventions: health education, surveillance, regulation, etc.		

	22	Challenges and opportunities in food safety and water sanitation		
V	Open	Ended	12	
	1	Emerging pathogens and trends in food and water borne diseases		

- 1. Griffin, P. M., Tauxe, R. V., Kock, M. E., & Osterholm, R. M. (2021). *Food and waterborne diseases in the United States: A public health handbook.* Centers for Disease Control and Prevention.
- 2. Heymann, D. L. (Ed.). (2015). *Control of communicable diseases manual* (20th ed.). American Public Health Association.
- 3. Dolan, C. T., & Law, B. A. (2019). Foodborne diseases. Academic Press.
- 4. Riemann, H., & Bryan, M. (2018). *Foodborne infections and intoxications* (4th ed.). Academic Press.
- 5. Singh, R. K., & Mishra, A. (2022). *Emerging food and waterborne diseases in India*. Springer.
- 6. Tiwari, R., & Sharma, A. (2020). Food and water safety: Strategies for developing countries. Springer.
- 7. Narrod, P., & Ollinger, C. (Eds.). (2023). *Foodborne illness: Latest trends, prevention strategies, and control measures.* Wiley.

СО	PSO1	PSO 2	PSO 3	PSO 4	PSO5	PSO6	PO 1	PO 2	PO 3	PO 4	РО 5	PO6
CO1	3	2	1				3	2	1			
CO2	2	3	1				2	3	1	2		
CO3	1	2	3				1	2	3	1	2	
CO4		1	2	3				1	2	3	1	2
CO5			1	2	3				1	2	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination
CO1	\checkmark	\checkmark	\checkmark

CO2	\checkmark		\checkmark
CO3	\checkmark	\checkmark	
CO4	\checkmark	\checkmark	
CO5	\checkmark	\checkmark	

MBY6EJ 307.MICROBIAL TAXONOMY

Programme	B. Sc. Microbiology								
Course Code	MBY6EJ 307	MBY6EJ 307							
Course Title	Microbial Taxonomy								
Type of Course	Major- Elective								
Semester	VI								
Academic Level	300 - 399								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	0	60				
Pre-requisites	Nil								
Course	This course provide	s a detailed	exploration	of microbial	l taxonomy,				
Summary	covering the classific	cation, nome	nclature, and	l identification	n of various				
	microbial species. It emphasizes understanding the historical								
	development, curre	nt methods	s, and app	plications of	microbial				
	classification systems								

Course Outcomes (CO):

•

CO	CO Statement	Cognitiv	Knowledge	Evaluation Tools				
		e Level*	Category#	used				
CO1	Understand the historical and conceptual development of microbial taxonomy.	U	С	Internal Exam, End Semester Exam				
CO2	Describe the criteria and techniques used for classifying microorganisms, including phenotypic and genotypic methods.	U	С	Internal Exam, End Semester Exam				
CO3	Analyze the roles and implications of microbial taxonomy in scientific research and its applications in health and environment.	An	С	Internal Exam, End Semester Exam				
CO4	Evaluate modern approaches in microbial taxonomy, including molecular methods and metagenomics.	Е	С	Internal Exam, End Semester Exam				
CO5	Critically assess the challenges and emerging trends in microbial taxonomy.	Е	С	Internal Exam, End Semester Exam				
* - Re # - Fa Metao	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

.

.

Detailed	l Syllai	pus:		
Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Intro	duction to Microbial Taxonomy	12	10
	1	Microbial diversity		
	2	Hierarchical organization and position of microbes in the		
		living world.		
	3	Haeckel's three kingdom classification		
	4	Whittaker's five kingdom approach		
	5	Three domain classification of Carl Woese		
	6	Historical development of microbial taxonomy		
II	Basic	s of microbial taxonomy	12	20
	7	Concept of species and taxa and strain.		
	8	Nomenclature and classification rules.		
	9	Classification systems- Numerical taxonomy or		
		Adansonian classification		
	10	Phenetic and phylogenetic Classification.		
	11	Chemotaxonomy		
III	Ident	ification of Microorganisms	12	20
	12	Various criteria used in bacterial classification-		
		morphological, physiological characteristics		
	13	Metabolic, biochemical characteristics		
	14	Nutritional and Ecological characteristics.		
	15	Molecular characteristics- comparison of proteins,		
		Aminoacid sequencing		
	16	Nucleic acid base composition, Nucleic acid		
		hybridization		
	17	Nucleic acid sequencing		
	18	Ribotyping, 16 S rRNA studies.		
IV	Micro	bial Taxonomy - Applications, recent advances and	12	20
		Importance of microbial taxonomy in various scientific		+
	19	disciplines		
	20	Emerging trends in microbial taxonomy research		
	20	Challenges in classifying unculturable microorganisms		
	$\frac{21}{22}$	Metagenomics and its impact on microbial taxonomy		-
V	Onon	and ad	12	-
v		Pargav's Manual of Systematic Pasteriology: Priof	12	-
		outline- review/assignment		
	2	Classification systems in fungue and their different		+
	<i>–</i>	classes- review/assignment		
	3	Classification of protozoa- review/assignment		
	4	Use of bioinformatics tools for identification of		+
	т	microorganisms		
	1			

•

- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). *Brock biology of microorganisms* (16th ed.). Pearson.
- Atlas, R. M. (1997). Principles of microbiology (2nd ed.). Wm. C. Brown Publishers.
- Black, J. G., & Black, L. J. (2018). *Microbiology: Principles and explorations* (10th ed.). Wiley.
- Salle, A. J. (2007). *Fundamental principles of bacteriology* (Reprint of the 2nd ed., 6th impression 1943). Envins Press.
- Tortora, G. J., Funke, B. R., & Case, C. L. (2019). *Microbiology: An introduction* (13th ed.). Pearson.

СО	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3		1		2	
CO2	2	3					2	3	2	1	3	
CO3		2	3			1		3	3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

	Internal Exam	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

MBY6EJ 308. BIOSAFETY AND BIOETHICS

Programme	B. Sc. Microbiology							
Course Code	MBY6EJ 308							
Course Title	Biosafety and Bioethi	ics						
Type of Course	Major-Elective							
Semester	VI							
Academic Level	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	Nil							
Course	This course introduces students to the ethical aspects of conducting							
Summary	research and practical	ls, and the sat	fety aspects to	be adhered t	o in labs and			
	research environment	s, promoting	responsible	conduct in sci	ence.			

Course Outcomes (CO):

•

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe various biohazards and biosafety levels.	U	С	Internal Exam, End Semester Exam
CO2	Explain the role of Biosafety guidelines by the Government of India and risk analysis and assessment.	U	С	Internal Exam, End Semester Exam
CO3	Understand the concept of introducing genetically modified organisms (GMOs) and biosafety during industrial production.	U	С	Internal Exam, End Semester Exam
CO4	Discuss the principles of Bioethics and ethical implications of biotechnology.	U	С	Internal Exam, End Semester Exam
CO5	Assess the impact of ethical considerations in the development and application of biotechnological innovations.	An	С	Internal Exam, End Semester Exam
* - Re	emember (R), Understand (U),	Apply (Ap), A	Analyse (An), E	valuate (E), Create (C)
# - Fa	ctual Knowledge(F) Conceptu	al Knowledge	(C) Procedural	Knowledge (P)

Metac	ognitive	e Knowledge (M)		
Detaile	d Sylla	bus:		
Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Biosa	fety	10	10
	1	Introduction to Biosafety, Definition		
	2	Objectives of safety guidelines and biosafety issues		
	3	Safety Cabinets & their types; Primary Containment for		
		Biohazards;		
	4	Biosafety levels of specific microorganisms		
	5	Applications of different levels of Biosafety		
	6	Hazardous materials used in Biotechnology- Handling		
		and Disposal		
II	Risk A	Assessment	10	20
	7	Physical containment		
	8	Biological containment		
	9	Assessment of risks during laboratory research		
	10	Risk assessment for biotechnology products		
	11	Biosafety Guidelines: Biosafety guidelines and regulations		
		(National and International);Role of Institutional biosafety		
		committee		
III	Genet	tically Modified Organisms	13	20
	12	Concept of Genetically Modified Organisms(GMOs)		
	13	Egs of genetically modified organisms, plants and animals		
	14	RCGM,GEAC for GMO applications in food and		
	1.5	agriculture		
	15	Environmental release of GMOs; Risk analysis, Risk		
	16	assessment, Risk management and communication		
11.7	16 D : 4	Genetic manipulations and their ethical issues.	15	20
IV	Bloet		15	20
	1/	Introduction to Bioethics		
	18	Applications of Bioetnics		
	19	Human Genome project and its ethical issues. Ethical, legal		
	20	and social implications of the numan genome project.		
	20	Molecular detection of presymptomatic genetic diseases		
	21	Ethical issues of Dranatal Diagnosis		
	21	Ethical issues of Prenatal Diagnosis.		
		Volunteers		
V	Onon	Fnded	12	
v	Case	Enucu studies_ Biosafety related incidents	14	
	Discut	ssion on policies of bioethes		
	Field	trin and site visit		
	Comm	unp and she visit		
		numry engagement projects		

•

÷

- 1. Bioethics: An introduction for the Biosciences by Ben Mepham
- 2. Bioethics and Biosafety by Satheesh MK.

СО	PS 01	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3			1			3		1		2	
CO2	2	3					2	3	2	1	3	
CO3	1		3				1		3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark		\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark

MBY8EJ 401. CELL BIOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY8EJ 401						
Course Title	Cell Biology						
Type of Course	Major-Elective						
Semester	VIII						
Academic Level	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4		-	60		
Pre-requisites	Nil						
Course	This course offers in-	depth knowle	edge about th	e function and	l structure of		
Summary	cells and cellular components. It provides foundational insights into cell						
	theory, cellular proc	esses includ	ing cell div	ision and ap	optosis, and		
	explores the implication	ions of these	processes in	ageing and ca	ncer.		

Course Outcomes (CO):

•

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
	Describe the structure and roles of			Internal Exam, End
CO1	various cellular organelles and	U	С	Semester Exam,
	molecules.			Assignment
	Analyze the mechanisms of cell			Internal Exam, End
CO2	signaling and communication	An	С	Semester Exam,
	pathways.			Assignment
	Evaluate the regulation			Internal Exam, End
CO3	mechanisms of the cell cycle and	Е	С	Semester Exam,
	their implications in cancer.			Assignment
	Discuss the molecular basis of cell			Internal Exam, End
CO4	aging and death, including	An	С	Semester Exam,
	apoptosis and necrosis.			Assignment
	Critically assess the impact of			Internal Exam End
COS	cellular malfunctions on human	F	C	Semester Exam
005	health and disease, including	Ľ	C	Δ ssignment
	cancer.			Assignment
* - Re	emember (R), Understand (U), Apply	(Ap), Analys	e (An), Evalua	te (E), Create (C)
# - Fa	ctual Knowledge(F) Conceptual Know	wledge (C) Pi	rocedural Knov	wledge (P)
Metao	cognitive Knowledge (M)			

÷.

Detaile	d Sylla	bus:		
Module	Unit	Content	Hrs (48 +12)	Marks (70)
I	Introd	uction to Cell Biology	10	10
-	1	Historical perspective	10	10
	2	Cell Theory.		
	3	Prokarvotes, Eukarvotes		
	4	Stem cells		
	5	Overview of techniques in cell biology		
II	Cell a	nd its constituents	12	20
	6	Plasma membrane: Structure, Functions of plasma membrane. Transport across the membrane.		
	7	Cytoskeleton, Cytoplasm, Structure and functions of Nucleus, Nucleolus, Chromosomes, Nucleosomes, Histones Centrosome		
	8	Mitochondria, Endoplasmic reticulum, Golgi apparatus, Chloroplast, Ribosomes, Peroxisomes, Lysosome, endosomes,		
III	Cell s	ignalling, Cell Division, Cell Cycle and Cancer	16	24
	9	Signal transduction pathways		
	10	Receptor-ligand interactions		
	11	Intracellular signaling		
	12	Tight junctions and gap junctions		
	13	Different stages of mitosis, Different stages of meiosis.		
	14	Cell cycle components and checkpoints, Role of cyclins and Cdks in cell cycle regulation.		
	15	Cancer - Benign and Malignant. Stages in cancer development and causes. Properties of cancerous cells.		
	16	Oncogenes, Tumour suppressor genes		
IV	Agein	g and Cell Death	10	16
	17	Process of Ageing, Theories of Ageing		
	18	Necrosis, Programmed Cell Death- Apoptosis.		
	19	Difference between necrosis and apoptosis		
	20	Mechanisms of apoptosis		
	21	Bax, Bid, Bcl2 proteins		
	22	Apoptosis in cancer and organ transplants.		
V	Open	Ended	12	
	Highe	r level Problem solving sessions		
	Anti-a	ageing strategies: Discuss the pros and cons		
	The si	tuations around us that leads to cancer development		

•

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). *Molecular Biology of the Cell* (6th ed.). Garland Science.
- 2. Cooper, G. M., & Hausman, R. E. (2019). *The Cell: A Molecular Approach* (8th ed.). Sinauer Associates.
- 3. Karp, G. (2019). *Cell and Molecular Biology: Concepts and Experiments* (8th ed.). Wiley.
- 4. Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J., & Johnson, G. T. (2017). *Cell Biology* (3rd ed.). Elsevier.
- 5. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2016). *Molecular Cell Biology* (8th ed.). W. H. Freeman.

СО	PSO 1	PS O2	PS O3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3			1		2	3	1		2	
CO2	3		3				3		3	2	3	1
CO3		2	3	3				2	3	3	3	2
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

	Internal Exam	Assignment	Project	End Semester Examinations
			Evaluation	
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark

MRV8F.I	402-CELL	AND	TISSUE	CULTURE
IVID I OĽJ	HUZ-CELL	AND	LISSUL	CULIUNE

Programme	B. Sc. Microbiology						
Course Code	MBY8EJ 402						
Course Title	Cell and Tissue Cultu	ıre					
Type of Course	Major-Elective						
Semester	VIII						
Academic Level	400 - 499						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4		-	60		
Pre-requisites	Nil						
Course	This Elective course	covers the f	undamental a	spects of Cel	l and Tissue		
Summary	Culture, culture medi	a component	s, types of pla	int and animal	cell culture,		
	applications of plant and animal cell culture technique, transgenic plants						
	and animals. It prov	ides students	with theoret	ical knowledg	ge and helps		
	them to identify the a	pplications o	f cell culture	techniques.			

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation				
		Level*	Category#	Tools used				
	Understand basic techniques and			Internal				
CO1	requirements of tissue culture	U	С	Exam,				
	requirements of tissue culture.			Assignments				
cor	Apply techniques to plant and animal	A 10	Б	Internal				
002	cells.	Ар	Г	Exam				
	Analyza autoomas from aultura			Internal				
CO3	Analyze outcomes from culture	An	С	Exam,				
	techniques.			Assignments				
	Aggagg the othical and safety			Assignments,				
CO4	Assess the ethical and safety	E	С	End-Sem				
	considerations in tissue culture.			Exam				
COS	Create experimental protocols for	C	Б	Assignments,				
COS	applications.	C	Г	Projects				
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)								
Metac	cognitive Knowledge (M)							

.

Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Introd	luction to Plant and Animal tissue culture	10	15
	1	Introduction to Plant and Animal tissue culture		
	2	Basic laboratory requirements for tissue culture		
	3	Maintenance of sterile conditions		
	4	Testing the viability of cells and dye exclusion methods		
	5	Types of media used and its formulations.		
II	Anim	al cell culture	10	15
	6	Animal cell culture media and its type		
	7	primary culture, cell lines and types- finite cell lines, continuous cell lines,		
	8	monolayer and suspension cultures, organ culture.		
	9	Maintenance of cell lines-Contamination of cell lines, replacement of Medium and Subculture		
III	Plant	cell tissue culture	15	25
	10	Plant cell tissue culture Media components,		
	11	Role of hormones in Plant tissue culture media		
	12	Plant hormones: Auxins, cytokinins, Gibberellins,		
		Abscisic Acid, ethylene.		
	13	Plant tissue culture techniques- explant culture, callus culture		
	14	Cell or suspension culture- filter paper raft nurse tissue		
		technique, micro chamber technique		
	15	Protoplast culture and somatic hybridization		
IV	Appli	cations of Plant and Animal tissue culture	10	15
	17	Applications of animal tissue culture - Animal cell culture as a substitute for animal experiments,		
	18	Stem cell culture and its applications		
	19	Brief account on Transgenic Plants and Animals		
	20	Applications of plant tissue culture - Somatic		
		embryogenesis, Crop improvement, Clonal propagation,		
		Production of pathogen free plants, Production of		
		seedless plants, synthetic seeds,		
	21	Production of secondary metabolites from plant cell		
		suspension culture		
	22	Brief account on transgenic plants- Herbicide resistant		
		plants, insect-resistant plants.		
V	Open	ended	30	
	1	Assignments/Seminars on the above topics, Cell Bank,		
		Cryopreservation, Cloning		
	2	Industrial visit to Agricultural Nurseries having plant		

	tissue culture facility	
3	Lab Visit to animal cell culture facilities, demonstration	
	sessions on cell viability assays in lab, etc	

- 1. Freshney, R. I. (2005). *Culture of animal cells: A manual of basic technique and specialized applications* (6th ed.). Wiley-Liss.
- 2. Vidyasekaran, P. (2010). Genetic engineering, molecular biology, and tissue culture for crop pest and disease management. Paya Publishing.
- 3. Ho, C. S., & Wang, D. I. C. (1995). Animal cell reactors. Butterworth-Heinemann.
- 4. Grierson, D., & Covey, S. N. (1988). *Plant molecular biology* (2nd ed.). Chapman and Hall.
- 5. Glick, B. R., & Pasternak, J. J. (2003). *Molecular biotechnology: Principles and applications of recombinant DNA* (3rd ed.). ASM Press.

	8											
CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						2		1			
CO2	2	3					1	2				
CO3	1	2	3					1	2			
CO4		1	2	3					1	2	3	
CO5			1	2	3					1	2	3

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignments	End Semester Exam
CO1	\checkmark	\checkmark	\checkmark
CO2	\checkmark		\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	

MBY8EJ 403. PLANT PATHOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY8EJ 403					
Course Title	Plant Pathology					
Type of Course	Major-Elective					
Semester	VIII					
Academic	400 - 499.					
Level						
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours	
			per week	per week		
	4	4	-	-	60	
Pre-requisites	Nil					
Course	This course explores the essentials of plant pathology including the					
Summary	mechanisms of disease development, pathogenic interactions, and control					
	methods. It emphasizes bacterial, fungal, viral, and nematode diseases of					
	plants, covering pathogen identification, disease cycle, and modern					
	management strategies.					

Course Outcomes (CO): .

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Define plant diseases and understand the disease cycle and pathogenicity.	U	С	Quizzes, Midterm Exam			
CO2	Classify plant diseases and recognize different types of plant pathogens.	R	F	Assignments, End Semester Examinations			
CO3	Explain the processes involved in plant disease development including infection and dissemination.	U	С	Instructor-created exams, Quizzes			
CO4	Evaluate plant defense mechanisms including induced systemic resistance (ISR) and systemic acquired resistance (SAR).	Е	F	Project Evaluation, End Semester Examinations			
CO5	Implement strategies for the chemical and biological control of plant diseases.	Ap	F	Practical Assessments, Lab Reports			
CO6	Conduct surveys of plant diseases and apply control measures, identifying diseases by their symptoms and causative organisms.	U	F	Quizzes, Final Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metacognitive Knowledge (M)							
Detailed Syllabus:

Module	Unit	Content	Hrs (48+12)	Marks
I	Conc	cents of plant diseases	10	15
-	1	Definition of Disease	10	10
	2	Disease cycle and its pathogenicity. Signs and		
		Symptoms associated with Microbial plant diseases		
	3	Classification of plant diseases		
	4	Types of plant pathogens		
	5	Contributions in the field of plant pathology		
Π	Plant	Disease development	12	15
	6	Infection, Invasion, colonization, Dissemination of		
		pathogens		
	7	Concepts of monocyclic, polycyclic and polyetic		
		diseases		
	8	Disease triangle and Disease pyramid		
	9	Plant defense mechanisms - Physical, Biochemical,		
		ISR and SAR.		
III	Plan	t Diseases	14	25
	10	Bacterial diseases - Angular leaf spot of cotton, Leaf		
		blight of rice		
	11	Bacterial disease- Crown Gall, Citrus Canker		
	12	Fungal disease- Red rot of sugarcane - Colletotrichum		
		<i>falcatum</i> , Wilt of tomato <i>-Fusarium oxysporum</i>		
	13	Fungal disease- Early blight of potato -Alternaria		
		solani, Wilt of cotton		
	14	Viral diseases- Papaya ring spot, Tomato Yellow Leaf		
	1.5	Curl,		
	15	Viral diseases- Banana Bunchy top, Tobacco Mosaic		
	16	Nematode Diseases: Root-Knot Nematode and Cyst		
11/	Dlant	disease management/ Control strategies	12	15
1 V	F 17	Chemical means of Disease control fungicides	12	15
	1/	virucides		
	18	Chemical means of Disease control - antibiotics.		
	10	nematicides		
	19	Biological control of plant diseases - Definition, scope		
		and importance		
	20	Biological control of plant diseases-Biopesticides,		
	21	Biological control of plant diseases-Beneficial insects,		
		and PGPR		
	22	Biological control of plant diseases- Endophytes		
V	Open	ended	12	
	1	Survey of plant diseases around the campus		

2	Application of chemical/biological control measures by student groups	
3	Visit to agricultural fields/ agricultural research stations.	
4	Identify the diseases mentioned in the syllabus with respect to causative organisms and symptoms	
5	Submit herbarium preparations of any three of the diseases mentioned.	

Books and References:

- 1. Campbell, R. (1987). Plant Microbiology. ELBS Edward Arnold, London.
- 2. Gupta, V. K., & Paul, T. S. (2004). *Fungi & Plant Diseases*. Kalyani Publishers, New Delhi.
- 3. Hale, M. E. (1983). The Biology of Lichen (III Edn.). Edward Arnold, London.
- 4. Deacon, J. (2007). Fungal Biology (IV Edn.). Blackwell Publishing, Ane Books Pvt. Ltd.
- 5. Agrios, G. N. (2005). Plant Pathology (5th ed.). Elsevier Academic Press.
- 6. Strange, R. N., & Scott, P. R. (2005). *Plant Disease: A Threat to Global Food Security*. Annual Review of Phytopathology.
- 7. Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). *The Evolution of Fungicide Resistance*. Advances in Applied Microbiology.
- 8. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature.
- 9. Van Alfen, N. K. (Ed.). (2012). Encyclopedia of Agriculture and Food Systems. Elsevier.
- 10. Horst, R. K. (2013). Westcott's Plant Disease Handbook (7th ed.). Springer.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO1	3	2	1	2			3	2	1		3	1
CO2	2	3	1				2	3	2	1		
CO3	3	1	2	1			3	1	2	3	1	
CO4	1	2	3				1	3	2	3	2	
CO5	2	1	3	2	3		2	1	3	2	3	1
CO6	3	2	1	3			3	2	1	2	3	2

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignmen t	Project Evaluation	Practical Assessment
CO1	\checkmark			
CO2	\checkmark	\checkmark		
CO3	\checkmark	\checkmark		
CO4			\checkmark	
CO5				\checkmark

MBY8EJ 404. MICROBES IN EXTREME ENVIRONMENT

Programme	B. Sc. Mic	robiology					
Course Code	MBY8EJ 4	104					
Course Title	Microbes i	n extreme envi	ronment				
Type of Course	Major-Eleo	ctive					
Semester	VIII						
Academic Level	400 - 499						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-		60		
Pre-requisites	Nil						
Course Summary	This cours	e delves into th	ne ecological an	d physiological	adaptations of		
	microbes thriving in harsh environments. Students will explore the						
	taxonomy,	taxonomy, metabolic strategies, and biotechnological applications of					
	extremoph	iles.					

Course Outcomes (CO): .

•

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the ecological importance and basic classifications of extremophiles.	U	C	Internal Exam, End Semester Exam			
CO2	Describe the physiological and molecular adaptations that allow extremophiles to thrive in harsh conditions.	U	С	Internal Exam, End Semester Exam			
CO3	Analyze the applications of extremophiles in biotechnology and industrial processes.	An	С	Internal Exam, End Semester Exam			
CO4	Evaluate the potential for extremophiles in future biotechnological applications, including challenges and ethical considerations.	Е	С	Internal Exam, End Semester Exam			
CO5	Conduct a critical review of current research on extremophiles, synthesizing findings from recent studies.	An	С	Internal Exam, End Semester Exam			
* - Re # - Fa Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

÷.

Module	Unit	Content	Hrs	Marks
			(48+12)	(70)
Ι	Introd	luction to Extremophiles	12	15
	1	Definition of extremophiles		
	2	Importance of extremophiles		
	3	Classification of extremophiles with examples		
	4	Applications of extremophiles		
	5	Extremophiles in bioremediation and biotechnological		
		applications		
II	Acido	philes and Alkalophiles.	12	15
	6	Acidophiles – Physiology and molecular adaptation		
	7	Applications and examples of acidophiles		
	8	Alkalophiles – Physiology and molecular adaptations		
	9	Applications and examples of alkalophiles		
III	Ther	nophiles, hyperthermophiles and psychrophiles	12	25
	10	Thermophiles - physiology and molecular adaptations		
	11	Applications and distribution of Thermophiles		
	12	Hyperthermophiles - physiology and molecular		
		adaptations		
	13	Applications and distribution of Hyperthermophiles		
	14	Psychrophiles – physiology and molecular adaptation		
	15	Applications and distribution of Psychrophiles		
IV	Halop	hiles and Barophiles	12	15
	16	Halophiles – physiology & molecular adaptations		
	17	Applications and distribution of Halophiles		
	18	Barophiles – physiology & molecular adaptations		
	19	Applications and distribution of Barophiles		
	20	Industrial applications of halophiles and barophiles		
	21	Genetic tools and manipulation of extremophiles		
	22	Future perspectives and challenges in extremophile		
		research		
V	Open	ended	12	
	1	Study on metalophiles, radiophiles, and xenobiotic		
		utilizers		

Books and References:

- 1. Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Reviews in Microbiology.
- 2. Horikoshi, K., Antranikian, G., Bull, A. T., Robb, F. T., & Stetter, K. O. (Eds.). (2011). Extremophiles Handbook. Springer.
- 3. Madigan, M. T., & Marrs, B. L. (1997). Extremophiles. Scientific American.

- 4. Seckbach, J. (Ed.). (2000). Journey to Diverse Microbial Worlds: Adaptation to Exotic Environments. Springer.
- 5. Gerday, C., & Glansdorff, N. (Eds.). (2007). Physiology and Biochemistry of Extremophiles. ASM Press.
- 6. van den Burg, B. (Ed.). (2003). Extremophiles as a Source of Novel Enzymes for Industrial Application. Springer.
- 7. Barton, L. L., & Northup, D. E. (Eds.). (2011). Microbial Ecology. Wiley-Blackwell.
- 8. Cavicchioli, R. (Ed.). (2007). Extremophiles: Microbiology and Biotechnology. Horizon Scientific Press.
- 9. Bell, E. (Ed.). (2012). Life at Extremes: Environments, Organisms and Strategies for Survival. CABI.

СО	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO1	3	2	1	<u> </u>	5	v	3	1	2	•	2	Ū
CO2	2	3					2	3	2	1	3	
CO3	1		3		2		1		3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examinations
CO1	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark

MBY8EJ 405-VIROLOGY AND EMERGING MICROBIAL DISEASES

Programme	B. Sc. Mi	B. Sc. Microbiology					
Course Code	MBY8EJ	405/MBY6E	EJ309				
Course Title	Virology	and Emergin	g microbial dis	seases			
Type of Course	Major-El	ective					
Semester	VI						
Academic Level	400-499	400-499					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course Summary	This cou	urse offers	in-depth know	wledge on vii	ral isolation,		
	cultivation, and the epidemiology of viral diseases. It focuses on						
	the transm	nission, treat	ment, and prev	vention of viral a	and emerging		
	microbial	diseases, alo	ngside develop	ments in vaccin	e technology.		

Course Outcomes (CO):

-

СО	CO Statement	Cognitive	Knowledge	Evaluation		
		Level*	Category#	Tools used		
CO1	Describe the general properties of viruses including structure, classification, and cultivation methods.	U	С	Internal Exam, Assignments		
CO2	Analyze the pathogenesis, diagnosis, and prophylaxis of key viral infections.	An	С	Assignments, Internal Exam		
CO3	Evaluate the public health impact of emerging viral diseases.	Е	С	Assignments, Internal Exam, End Semester Exam		
CO4	Apply diagnostic techniques for detecting viral infections.	Ap	F	Internal Exam		
CO5	Synthesize strategies for the prevention and control of viral diseases including developments in vaccine technology.	С	F	Assignments, End Semester Exam		
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

-

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
	Gener	al properties of viruses	12	15
	1	Structure and morphology		
	2	Principles of viral classification		
	3	Different methods of cultivation and isolation of viruses-		
		laboratory requirements for cultivation, embryonated egg		
Ι		inoculation, animal inoculation, permissive and non-		
		permissive hosts or cells, tissue culture cell lines; detection		
		of viral growth in cell culture		
	4	Replication of viruses - lytic and lysogenic cycles		
	5	Viral inclusion bodies - methods of staining and		
		demonstration		
II	Know	ledge about medically important DNA and RNA viruses	12	15
	6	Pathogenesis, laboratory diagnosis and prophylaxis of		
		following infections - small pox, chicken pox, shingles.		
	7	Pathogenesis, laboratory diagnosis and prophylaxis of -		
		infectious mononucleosis, cytomegalo virus		
	8	Pathogenesis, laboratory diagnosis and prophylaxis of -		
		polio, influenza, rabies.		
	9	Pathogenesis, laboratory diagnosis and prophylaxis of -		
		hepatitis, HIV, viral hemorrhagic fever, slow virus		
		diseases.		
	10	Pathogenesis, laboratory diagnosis and prophylaxis of		
		mumps, measles, and rubella		
III	Emer	ging microbial diseases	12	25
	11	SARS and Nipah virus	[
	12	Ebola virus		
	13	Zika virus	[
	14	Yellow fever and Japanese encephalitis	[
	15	Dengue, chikun gunya, swine flue		
IV	Viral	diagnosis	12	15
	16	Collection, preservation, transportation, and processing of		_
	-	viral specimen		
	17	Isolation and identification of specimen for viral	[
		diagnosis		
	18	Serological diagnosis of viral infection - Paul Bunnel test,		
		haemagglutination and haemagglutination inhibition test,		
		viral neutralization test, immunofluorescence.		
	19	Principles of immunoblotting techniques - southern and		
		northern blotting		
	20	Principles of Luminescence assay, PCR and its		
		applications		

	21	Types of viral vaccines Role of genetic engineering in vaccine development		
V	Open	Ended	12	
		Visit to virology laboratories		
		Data collection related to viral infection outbreaks		

Reference books:

- 1. Carter, J., & Saunders, V. (2016). *Virology: Principles and Applications* (2nd ed.). Wiley.
- 2. Racaniello, V. R. (2019). Principles of Virology. ASM Press.
- 3. Knipe, D. M., & Howley, P. M. (Eds.). (2018). *Fields Virology: Emerging Viruses* (7th ed., Vol. 2). Wolters Kluwer Health/Lippincott Williams & Wilkins.
- 4. Modrow, S., Falke, D., Truyen, U., & Schätzl, H. (2019). *Molecular Virology*. Springer.
- 5. Nathanson, N. (Ed.). (2017). *Viral Pathogenesis: From Basics to Systems Biology* (3rd ed.). Academic Press.
- 6. Zuckerman, A. J., Banatvala, J. E., Schoub, B. D., Griffiths, P. D., & Mortimer, P. (Eds.). (2018). *Principles and Practice of Clinical Virology* (7th ed.). Wiley.

Mapping of COs with PSOs and POs:

СО	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	1
CO2	2	3		1			2	3	2	1	3	
CO3	3	2	1				3	2	3	2	2	1
CO4	1	2	3				1	2	3	3		2
CO5	2	1		3		3	2	3	1	2	3	1

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignments	End Semester Exam
CO1	\checkmark	\checkmark	
CO2	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark		
CO5		\checkmark	\checkmark

MBY8EJ 406-PLANT-DERIVED ANTIMICROBIALS

Programme	B. Sc. Microbiology							
Course Code	MBY8EJ 406							
Course Title	Plant-Derived Antim	Plant-Derived Antimicrobials						
Type of Course	Major-Elective	lajor-Elective						
Semester	VIII	/III						
Academic Level	400-499	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	Nil							
Course	This course delves	into the w	orld of pla	nt-derived an	timicrobials,			
Summary	exploring their extrac	exploring their extraction, mechanisms of action, and ethical applications.						

Course Outcomes (CO):

-

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools					
		Level*	Category#	used					
CO1	Understand the historical and current perspectives on the use of plant- derived compounds as antimicrobial agents.	U	С	Internal Exam, End Semester Exam					
CO2	Explain the biochemical mechanisms through which plant- derived antimicrobials act against pathogens.	U	С	Assignments, Internal Exam, End Semester Exam					
CO3	Apply laboratory techniques for extracting and testing the efficacy of plant-derived antimicrobials.	Ар	F	Assignments, Internal Exam, End Semester Exam					
CO4	Analyze the role of these antimicrobials in various sectors and their potential in addressing global challenges like antibiotic resistance.	An	С	Assignments, Internal Exam, End Semester Exam					
CO5	Evaluate the ethical, environmental, and socio-economic factors influencing the use of plant-derived antimicrobials.	E	С	Assignments, Internal Exam, End Semester Exam					
* - Re # - Metac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

.

Detai	led Sylla	ibus:		
Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Introdu	uction to Plant-Derived Antimicrobials	12	10
	1	Definition and significance of plant-derived antimicrobials		
	2	Historical perspectives		
	3	Importance of plant based antimicrobials in traditional medicines		
	4	Plants with antimicrobial property		
Π	Chemi	cal Diversity of Plant-Derived Antimicrobials	12	20
	5	Overview of phytochemicals with antimicrobial properties		
	6	Classification of antimicrobial compounds from plants (phenolics, alkaloids, terpenoids, etc.)		
	7	Plant derived antimicrobial peptides		
	8	Spectral activity against bacteria, fungi, viruses, and parasites		
	9	Sources and distribution		
	10	Extraction techniques		
	11	Purification and isolation		
	12	Factors influencing antimicrobial activity		
III	Mecha	nisms of Action	12	20
	13	Chemical nature		
	14	Target sites and mechanism of action.		
	15	Evolution of resistance mechanisms		
	16	Toxicological concerns and safety assessment		
	17	Determination of minimum inhibitory concentration (MIC)		
		and minimum bactericidal/fungicidal concentration		
		(MBC/MFC)		
IV	Applic	ations of Plant-Derived Antimicrobials	12	20
	18	Medical applications		
	19	Food preservation and safety		
	20	Agricultural applications		
	21	Cosmetics and personal care products		
	22	Synergistic effects and combinational therapies		
	Open l	Ended	12	
	Collec	tion of literature related to plant derived antimicrobials and		
	organiz	ze a group discussion on the group and mode of action.		
	Assign	students with different plants of medical importance and the		
	entire a be iden	antimicrobial compounds already reported from that plant to ntified and presented.		

Books and References:

÷

- 1. Nicoletti, M. (2007). Medicinal Plants: Chemistry and Properties. Science Publishers.
- 2. Muñoz-Torrero, D. (Ed.). (2009). *Plant-Derived Antimicrobials: A Review on Their Antibacterial Mechanisms, Toxicity, and Application*. CRC Press.

- 3. Srinivasan, R. V. (2011). Bioactive Compounds from Plants: An Overview. Wiley.
- 4. Brahmachari, G. (Ed.). (2012). Natural Products as Antiviral Agents. Springer.
- 5. Sharma, R. (2013). *Phytochemicals: Extraction Methods, Basic Structures and Mode of Action as Potential Chemotherapeutic Agents*. Nova Science Publishers.
- 6. Brice, R. (Ed.). (2014). Antimicrobial Agents: Chemistry, Mode of Action, Mechanisms of Resistance, and Clinical Applications. Wiley.
- 7. Buhner, S. H. (2013). *Herbal Antivirals: Natural Remedies for Emerging & Resistant Viral Infections*. Storey Publishing.
- 8. Rao, V., & Rao, L. G. (Eds.). (2009). Phytochemicals as Bioactive Agents. CRC Press.
- 9. Brar, S. K., & Singh, G. (Eds.). (2016). *Pharmacognosy: Fundamentals, Applications and Strategies*. Academic Press.
- 10. Crozier, A., Ashihara, H., & Tomás-Barberán, F. (Eds.). (2006). *Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet.* Wiley.
- 11. Kaur, S., & Singh, G. (Eds.). (2015). *Phytochemicals: A Global Perspective of Their Role in Nutrition and Health*. InTech.

СО	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6
CO1	3	2	1				3	2	1		2	
CO2	2	3					2	3	2	1	3	
CO3		2	3		1		1	3	3	2	2	1
CO4	1			3	2		1			3		2
CO5			3		3					3	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark

MBY8EJ 407. DEVELOPMENTAL BIOLOGY

Programme	B. Sc. Microbiology							
Course Code	MBY8EJ 407							
Course Title	Developmental Biolo	Developmental Biology						
Type of Course	Major-Elective	Major-Elective						
Semester	VIII	VIII						
Academic Level	400-499							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	A basic understandin	g of biology	, cell biology	, genetics, an	d embryonic			
	development							
Course	This developmental	biology co	urse compre	hensively ov	rerviews the			
Summary	fundamental princip	les governir	ng the deve	lopment of	multicellular			
	organisms. Spanning	five units, it	covers key to	opics such as	cell division,			
	differentiation, and m	orphogenesi	s in animals a	and plants				

Course Outcomes (CO):

•

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools					
CO1	Understand the key concepts and principles of developmental biology.	Level* U	Category#	Internal Exam, End Semester Exam					
CO2	Understand the evolution of cellular processes in developmental biology.	U	С	Assignments, Internal Exam, End Semester Exam					
CO3	Master key developmental concepts like fate maps and stem cells.	U	С	Assignments, Internal Exam, End Semester Exam					
CO4	Follow the journey from reproduction to organ formation.	U	С	Assignments, Internal Exam, End Semester Exam					
CO5	Grasp how bodies develop and grow from patterns to organs.	U	С	Assignments, Internal Exam, End Semester Exam					
* - Re # - Metac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Detailed Syllabus:

÷

.

Module	Unit	Content	Hrs (48+12)	Marks (70)
Ι	Introd	luction & Basic Concepts of Developmental Biology	10	10
	1	Historical perspectives	1	
	2	Cellular processes in development: cell division,	3	
		differentiation, and Morphogenesis		
	3	Basic Concepts of Development- Fate maps, Commitment	3	
	4	Differentiation and Totipotency Morphogenic gradient, Stem cells	3	
II	Sexua	l reproduction	10	10
	5	Production of gametes, Fertilization	3	
	6	Cleavage and blastulation. Formation of germ layers	3	-
	7	Embryonic Development- Gastrulation. Extraembryonic	4	-
		membranes, Neurulation		
III	Morp	bhogenesis and organogenesis in animals	14	25
	8	Cell aggregation and differentiation in <i>Dictvostellium</i>	1	
	9	Axis and pattern formation in <i>Drosophila</i>	1	
	10	Vulva formation in <i>Caenorhabdtis elegans</i>	1	
	11	Eye lens induction, Limb development in vertebrates	2	
	12	Heart development	2	
	13	Kidney development	1	
	14	Differentiation of neurons and development of the nervous	2	
		system		
	15	Development of the reproductive system	2	
	16	Metamorphosis, Regeneration & sex determination	2	
IV	Stem	Cells and Developmental Genetics	14	25
	17	Apoptosis, Extrinsic pathway of apoptosis, Intrinsic pathway of apoptosis, Ageing, Cellular senescence	2	
	18	Basics of stem cell biology, Regeneration in different organisms	1	
	19	Applications of stem cells in medicine	2	
	20	Environmental Influences on Development-	3	
		Developmental plasticity, Teratogens and developmental disorders. Enigenetic regulation of development		
	21	Developmental Genetics- Genetic regulation of	3	<u> </u>
		development, Homeotic genes and pattern formation		
	22	Mutations and developmental disorders	3	
V	Open	Ended- Plant Development Biology	12	
	1	Gamete production in Angiosperms, Pollination, Fertilization, Embryonic development, Dormancy, Vegetative growth, Floral signals		

•

Books and References:

- 1. Wolpert, L., Tickle, C., & Arias, A. M. (2015). *Principles of development* (5th ed.). Oxford University Press.
- 2. Gilbert, S. F. (2019). Developmental biology (12th ed.). Sinauer Associates.
- 3. Gilbert, S. F., & Barresi, M. J. F. (2016). *Developmental biology* (11th ed.). Sinauer Associates.
- 4. Slack, J. M. W. (2013). Essential developmental biology (3rd ed.). Wiley-Blackwell.
- 5. Barresi, M. J. F., & Gilbert, S. F. (2018). *Developmental biology* (12th ed.). Sinauer Associates.
- 6. Wolpert, L. (2011). *Developmental biology: A very short introduction*. Oxford University Press.
- 7. Moore, K. L., Persaud, T. V. N., & Torchia, M. G. (2018). *The developing human: Clinically oriented embryology* (11th ed.). Elsevier.

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3		2		1	2
CO2	2	3				2	2	3		3		3
CO3		2	3		1	1	3	2	2	2	1	
CO4	1			3	2	1	1		3	3	2	1
CO5		3		3			3	3		3		3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination
CO1	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark

MINOR COURSES

÷.

No	Course	Sem	Code	Title
1	Minor	Ι	MBY1MN 100	Introduction to Microbiology
2	Minor	Ι	MBY1MN 101	Microbial Growth
3	Minor	II	MBY2MN 100	Basic Techniques in Microbiology
4	Minor	II	MBY2MN 101	Bacterial infections and Host defense systems
5	Minor	III	MBY3MN 200	Microbial metabolism
6	Minor	III	MBY3MN 201	Applied Microbiology

MBY1CJ 101/ MBY1MN100. INTRODUCTION TO MICROBIOLOGY

÷.

Progr	amme	B. Sc. Microbiology							
Cours	se Code	MBY1CJ 101/MBY1	MN100						
Cours	se Title	Introduction to Micro	biology						
Туре	of Course	Major/Minor							
Seme	ster	Ι							
Acad	emic Level	100 - 199							
Cours	se Details	Credit	Lectur	re	Tutorial	Practical	Total		
			per we	ek	per week	per week	Hours		
		4	3		-	2	75		
Pre-re	equisites	Nil							
Cours	se	This introductory cou	rse cover	rs the	e fundamen	tal aspects of m	icrobiology,		
Sumr	nary	exploring microbial	diversity	v, sti	ructure, fur	nction, and its	impacts on		
		human and environm	nental he	alth	. It provide	s students with	n theoretical		
		knowledge and prac	ctical sk	tills	fundament	al for further	studies in		
		microbiology and rela	ated field	ls.					
Cours	e Outcomes	s (CO):							
CO	CO Statement			C	Cognitive	Knowledge	Evaluation		
					Level*	Category#	Tools used		
	Understand	d the diversity morn	hology				Internal Exam		
COL	and reproc	production of bacteria, fungi, and s.				С	Assignment,		
COI	viruses						End Semeste		
	viruses.						Examination		
	Explain th	n the historical development and					Internal Exam		
CO2	scope of				II	C	Assignment,		
002	contributio	merobiology, merud	ing the	0	C	End Semeste			
	contributio	ons of key scientists.					Examination		
	Differentic	te the fundamental st	ructures				Internal Exam		
CO2	of prokery	ut the fundamental su	lla and	۸n		C	Assignment,		
005	describe th	one and cukaryone ee	ins, and	All	L	C	End Semeste		
	describe th	le major unierences.					Examination		
	Deceribe	the related of honofie	ial and				Internal Exam		
COA	bermful	microorganisms in	lai allu	ΤT		C	Assignment,		
04	marininu	nte	various	U		C	End Semeste		
	environme	nts.					Examination		
	Demonstra	te basic microbi	ological						
COS	laboratory	techniques, in	cluding	A		р	Practical		
COS	microscop	py, staining, and culture		Ар		P	Assessment		
	methods.								
* - Re	emember (R), Understand (U), App	oly (Ap),	Ana	lyse (An), I	Evaluate (E), C	reate (C)		
# - Fa	ctual Know	ledge(F) Conceptual K	nowledg	ge (C) Procedura	l Knowledge (l	P) Metacognitive		
Know	vledge (M)	-	-			_ 、	-		

Detaile	d Sylla	bus:		-
Modul e	Unit	Content	Hrs (45 +30)	Mark s (70)
Ι	The N	Vicrobial World	10	15
	1	Bacterial forms and arrangement of cells.		
	2	Morphology of molds and yeasts		
	3	Sexual and asexual reproduction in fungi.		
	4	Viral morphology and replication processes.		
	5	Structure, lytic cycle, and lysogeny of bacteriophages.		
II	Histo	ry of Microbiology	10	15
	6	Overview of microbiology's scope and its historical		
	7	development.		_
	/	Debate of Spontaneous generation vs. Biogenesis.		
	8	Contributions of Anton van Leeuwenhoek, Joseph Lister,		
	0	Paul Enrich, and other pioneers.		
III	9 Eurd	amontal Structure of Call	15	25
111	Funa 10	amental Structure of Cell	15	25
	10	their differences.		
	11	Structures of archaebacteria and eubacteria.		
	12	Detailed analysis of bacterial ultrastructure (e.g.,		
		glycocalyx, capsule).		
	13	Composition and structure of gram-positive and gram-		
		negative cell walls.		
	14	Cell membrane structure, function, and composition in		
		bacteria and archaea.		
	15	Cytoplasmic structures (e.g., ribosomes, inclusion bodies).		
	16	Endospore formation and sporulation stages.		
IV	Bene	ficial & Harmful Microorganisms	10	15
	17	Roles of beneficial soil microbes like PGPR and		
	10	Disperticides and his control escents		
	18	Biopesticides and biocontrol agents.		
	19	A sufficient of mission has in the mass souther line dustries.		
	20	Application of microbes in pharmaceutical industries.		
	21	viruses		
	22	Viluses.		
		health		
V	Pract	ical Applications in Microbiology	30	
v	1	Introduction to laboratory instruments and safety		
	1	precautions.		
	2	Common methods of sterilization		
	3	Microscope maintenance and usage.		+
1				1

•

Books and References:

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

Mapping of COs with PSOs and POs:

	PSO1	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
		2	3		5							
CO1	3		2	3		3		2	3		3	
CO2	3			2		3		3	3		2	
CO3	3		3			2		3		2	3	
CO4	2	3				2	3	3		2		
CO5		3	3	3					3	3		

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

Course Outcome (CO)	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark	\checkmark	\checkmark	
CO2	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	
CO4	\checkmark		\checkmark	
CO5				\checkmark

MBY1MN101-MICROBIAL GROWTH

Programme	B. Sc. Microbiology						
Course Code	MBY1MN101						
Course Title	Microbial Growth						
Type of Course	Minor						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Nil						
Course	This course introduc	es the funda	mental conce	epts of micro	bial growth,		
Summary	exploring the nutritional requirements, environmental factors affecting						
	growth, and the applications of understanding microbial growth in various						
	fields.		_	_			

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand various nutrients for microbial growth.	U	Р	Internal Exam, Assignment, Practical Assessment, End Semester Examination
CO2	Analyze various factors influencing microbial growth.	Ар	Р	Internal Exam, Assignment, Practical Assessment, End Semester Examination
CO3	List and analyze various nutrient transport mechanisms.	An	Р	Internal Exam, End Semester, Practical Assessment, Examination
CO4	Implement the knowledge of microbial growth in practical applications.	Ap	Р	Internal Exam, End Semester Examination
CO5	Recognize the application of microbial growth in various fields.	Ар	С	Practical Assessment
* - Re # - Fa Metao	emember (R), Understand (U), Apply (A ctual Knowledge(F) Conceptual Knowle cognitive Knowledge (M)	p), Analyse (A edge (C) Proc	An), Evaluate (edural Knowle	(E), Create (C) dge (P)

.

.

Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Micro	obial Nutrition	10	15
	1	Nutritional requirements of bacteria- Major and Minor		
		Elements		
	2	Nutritional Types- Autotrophy, Heterotrophy,		
		Chemotrophy, Phototrophy, Lithotrophy and Organotropy		
	3	Major nutritional groups of bacteria		
	4	Acetogenesis		
	5	Methanogenesis.		
Π	Micro	obial growth	10	15
	6	Factors affecting microbial growth. (ph, temperature,		
		oxygen, salinity, radiation etc)		
	7	Classification of microorganisms based on various		
		physical factors.		
	8	Microbial Stress response		
	9	Growth curve and its significance		
III	Nutri	ent transportation	15	25
	10	Diffusion and Facilitated diffusion .		
	11	Active and Passive transport		
	12	Group translocation		
	13	Iron uptake and Siderophores		
	14	Electrogenic and Electro neutral Transport.		
	15	Role of plasma membrane in nutrient transport		
	16	Role of water activity and Osmosis in nutrient transport		
IV	Appli	ication of Microbial growth	10	15
	17	Biotechnology (fermentation processes)		
	18	Food industry (food spoilage, food preservation)		
	19	Environmental Science (Bioremediation)		
	20	Agricultural industry (Biofertilizer, Biopesticides)		
	21	Medicine and Health care (Probiotics and Vaccines)		
	22	Clinical Microbiology (Antimicrobial testing)		
V	Pract	ical Applications in Microbial growth	30	
	1	Growth Curve		
	2	Effect of pH on microbial growth		
	3	Effect of temperature on microbial growth.		1

References

- 1. Salle, A. J. (2018). *Fundamentals of Bacteriology*. (Latest ed.). [Publisher Information Required].
- 2. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (2019). *Microbiology*. (Latest ed.). McGraw-Hill Education.
- 3. Frobisher, M., Hinsdill, R. D., Crabtree, K. T., & Goodheart, C. R. (2020). *Fundamentals of Microbiology*. (Latest ed.). [Publisher Information Required].

- 4. Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (2018). *General Microbiology*. (Latest ed.). Macmillan.
- 5. Prescott, L. M., Harley, J. P., & Klein, D. A. (2017). *Microbiology*. (9th ed.). McGraw-Hill Education.
- 6. Brock, T., Madigan, M. T., Martinko, J. M., & Parker, J. (2019). *Brock Biology of Microorganisms* (15th ed.). Pearson.
- 7. Atlas, R. M., & Bartha, R. (2020). *Microbial Ecology: Fundamentals and Applications* (5th ed.). Benjamin Cummings.
- 8. Moat, A. G., Foster, J. W., & Spector, M. P. (2018). *Microbial Physiology* (5th ed.). Wiley.
- 9. Schlegel, H. G., & Zaborosch, C. (2017). *General Microbiology* (7th ed.). Cambridge University Press.
- 10. Singleton, P. (2021). *Bacteria in Biology, Biotechnology, and Medicine* (7th ed.). Wiley.
- 11. Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (Eds.). (2016). *Handbook of Industrial Mixing: Science and Practice*. Wiley.

	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3			3		2	3		3
CO2	3		2				3		3	2		2
CO3	3		3				3		2	3		1
CO4	2	3					2	3	3			2
CO5		3	3	3				3	1	2	3	3

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)
- -

СО	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	\checkmark	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark		\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark
CO5				\checkmark

MBY2CJ 101/ MBY2MN100. BASIC TECHNIQUES IN MICROBIOLOGY

Programme	B. Sc. Microbiology							
Course Code	MBY2CJ 101/MBY2	MBY2CJ 101/ MBY2MN100						
Course Title	Basic Techniques in N	Microbiology	7					
Type of Course	Major/Minor							
Semester	II							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Nil							
Course	This preliminary co	ourse introd	uces the ba	asic techniqu	es used in			
Summary	microbiology. It enab	oles the stude	ents to acquir	re a sound the	eoretical and			
	practical knowledge of	on microscop	y techniques	, staining met	thods, media			
	and methods for cult	uring the mi	croorganisms	s and culture	preservation			
	strategies.							

Course Outcomes (CO):

÷.

CO	CO Statement	Cognitive	Knowledge	Evaluation
CO1	Master the use of various microscopy techniques, including electron, phase contrast, and fluorescence microscopy, to analyze microorganisms.	(U)	(P)	Internal Exam, Assignment, End Semester Examinations
CO2	Execute and differentiate between multiple staining techniques, such as Gram, acid-fast, and capsule staining, to identify and classify microbial structures.	(Ap)	(P)	Internal Exam, Assignment, End Semester Examinations
CO3	Prepare, select, and utilize appropriate culture media for the growth of aerobic and anaerobic microorganisms.	(Ap)	(P)	Internal Exam, End Semester Examinations
CO4	Implement isolation and culture techniques to maintain pure microbial cultures and apply preservation methods for long- term use.	(An)	(P)	Internal Exam, End Semester Examinations
CO5	Demonstrate proficiency in microbiological laboratory techniques through practical application and understanding of	(Ap)	(C)	Practical assessments

theoretical concepts.						
* - Remember (R), Understand (U), Appl	(Ap), Analyse	(An), Evaluate ((E), Create (C)			
# - Factual Knowledge(F) Conceptual Kn	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)					
Metacognitive Knowledge (M)						

Detailed Syllabus:

•

Module	Unit	Content	Hrs (45	Marks (70)
T	MICI	DOSCOBY	+30)	15
I		Introduction to microscope resolving power numerical	10	15
	1	aperture oil immersion objective		
	2	Types of microscopes - bright field dark field		
	3	Phase contrast, confocal microscopes		
	<u> </u>	Fluorescent microscopes		
	5	Flectron microscopy - TEM and SEM		
	6	Electron microscopy - sample preparation & fixation		
	Ŭ	labelling & storage of slides		
Π	STAI	NING	10	15
	7	Mechanism of staining - Basic dyes, Acidic dyes,		
		Bacterial smear preparation and fixation.		
	8	Simple Staining, Differential staining- Gram staining,		
		Acid fast staining,		
	9	Staining specific structures-Endospore staining, Negative		
		staining, Capsule staining, Flagellar staining,		
	10	Fungal staining		
	11	Preparation of permanent slides		
III	CUL	ΓURE MEDIA	15	25
	12	Solid and liquid media, simple and complex, synthetic or		
		defined media.		
	13	Selective, enrichment, enriched media		
	14	differential, indicator media, Transport media		
	15	Anaerobic media- thioglycollate medium, Robertson's		
		media.		
	16	Cultivation of anaerobic bacteria -Production of vacuum,		
		displacement of oxygen with other gases, chemical		
		methods, biological methods and reduction of medium.		
IV	CUL	ΓURE METHODS -	10	15
	17	Isolation of microbes- Dilution plating and enrichment		
	10	technique.		
	18	Pure culture techniques-Streak, spread, pour plate		
	10	methods		
	19	Stab culture, stroke culture and lawn culture.		
	20	Culture preservation strategies-regular subculture, paraffin		

		method, storage in soil, storage in silica gel		
	21	Storage at refrigerator or cold room storage, storage by		
		freeze drying and drying, preservation under liquid		
		nitrogen		
	22	Microbial culture collections		
V	Pract	tical Applications in Microbiology	30	
	1	Staining procedures for microorganisms		
	2	Microscopic observation of microorganisms		
	3	Culture media prepartion		
	4	Demonstration/research institute visit - dark field, phase		
		contrast, confocal, fluorescent, Electron microscopes		

Books and References:

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

Mapping of COs with PSOs and POs :

	PSO	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
	1	2	3		5							
CO1	3		2	3	3		3		2	3	3	
CO2	3		3	2	3		3		3	2	3	2
CO3	3		3		2		2		3		3	3
CO4	2	3	3		2		2	3	3		2	
CO5	2		2	3	3		3		2	3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

со	Internal Exam	Assignmen t	End Semester Examinations	Practical Assessment
CO1	\checkmark	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark		\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark
CO5				\checkmark

MBY2MN101-BACTERIAL INFECTIONS AND HOST DEFENSE SYSTEMS

Programme	B. Sc. Microbiology							
Course Code	MBY2MN 101	MBY2MN 101						
Course Title	Bacterial infections a	nd Host defe	nse systems					
Type of Course	Minor							
Semester	II							
Academic Level	101-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Nil							
Course	This course offers an	introductory	exploration of	of the host def	ense systems			
Summary	of the human body. It covers the basics of immunology and various							
	bacterial infections th	hat affect hu	mans, focusi	ing on the me	chanisms of			
	infection, disease tran	nsmission, an	nd the body's	immunologic	al responses.			

Course Outcomes (CO):

CO	CO Statement	Cognitiv	Knowledge	Evaluation			
		e Level*	Category#	Tools used			
CO1	Describe the basics of microbial infections, focusing on bacterial pathogens, and understand the human body's primary defense mechanisms against these pathogens.	U	С	Internal Exam, End Semester Exam, Practical Assessments			
CO2	Demonstrate practical skills in microbiological techniques such as staining, culture methods, and identifying bacterial pathogens.	Ар	Р	Assignments, Internal Exam, Practical Assessments			
CO3	Explain the mechanisms of immune response to bacterial infections, including the role of antibodies and the complement system.	U	С	Assignments, Internal Exam, End Semester Exam			
CO4	Analyze case studies on bacterial infections to understand disease transmission, symptoms, and preventive measures.	An	С	Case Study Evaluation, Internal Exam			
CO5	Evaluate the effectiveness of different antimicrobial treatments and vaccines against bacterial pathogens through theoretical and practical approaches.	E	Р	Assignments, Internal Exam, Practical Assessments			
* - Re # - Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Intro	duction to infection and diseases	10	10
	1	Types of infections		
	2	Types of diseases .		
	3	Sources of infections		
	4	Mode of transmission of infection.		
	5	Reservoirs, carriers and vectors of communicable diseases.		
	6	Role of WHO in pandemic alerts		
II	Bacte	rial infections	15	20
	7	Staphylococcus aureus		
	8	Streptococci and Neisseria		
	9	Clostridium botulinum and Clostridium tetani		
	10	Salmonella typhi and Vibrio cholerae		
	11	Mycobacterium tuberculosis		
III	Defe	nse system	10	20
	12	Immunity- Innate and acquired		
	13	Active and passive, Natural and artificial. Local		
		immunity and Herd immunity		
	14	Disease prevention and control-controlling the reservoir,		
		interruption of transmission, Immunisation etc.		
	15	Principles of active, passive and combined immunisation.		
		Indian Immunisation schedule.		
	16	Cells and organs of immune system		
IV	Basic	s of immunology	10	20
	17	Antigens and its type		
	18	Antibody structure and its classification		
	19	Antigen Antibody reactions		
	20	Complement System		
	21	Monoclonal and polyclonal antibodies. Hubridoma		
	22	Hypersensitivity and autoimmunity		
V	Pract	ical Applications	30	
	1.	IMViC reactions of bacteria		
	2.	Widal Test/ASO Test/RA test		
	3.	Blood grouping		
	4.	Differential count of Leucocytes		

Books and References:

- 1. Abbas, A. K., & Lichtman, A. H. (2010). *Basic Immunology: Functions and Disorders of the Immune System*. Saunders Elsevier.
- 2. Janeway, C. A., et al. (2011). *Immunobiology: The Immune System in Health and Disease*. Garland Science.
- 3. Roitt, I., Brostoff, J., & Male, D. (2001). Immunology. Mosby.

- 4. Brooks, G. F., et al. (2012). Medical Microbiology. McGraw-Hill.
- 5. Kuby, J. (2013). Immunology (7th ed.). W.H. Freeman and Company.
- 6. Ingraham, J. L., & Ingraham, C. A. (2004). *Introduction to Microbiology* (3rd ed.). Brooks/Cole.
- 7. Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). *Introductory Mycology* (4th ed.). Wiley.
- 8. Ananthanarayan, R., & Paniker, C. K. J. (2013). *Textbook of Microbiology* (9th ed.). Orient Longman.

mappin	mapping of CO3 with 1 503 and 1 03.											
CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3	1	2	1	2	1
CO2	2	3		2	1		2	3	3	2	3	1
CO3		2	3	1		1	1	3	2	2	2	1
CO4	1			3	2		1	З	3	3	3	2
CO5			3		3			3		3	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

со	Internal Exam	Assignment	Practical Assessments	End Semester Examination
CO1	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark			\checkmark
CO5	\checkmark	\checkmark	\checkmark	

MBY3CJ 202. MICROBIAL METABOLISM

Programme	B. Sc. Microbiology							
Course Code	MBY3CJ 202/MBY3	MN 200						
Course Title	Microbial Metabolism	n						
Type of Course	Major/Minor							
Semester	III							
Academic Level	200 - 299							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Nil							
Course	This introductory co	urse covers	the fundame	ntal aspects o	of Microbial			
Summary	Metabolism. It invol	ves converti	ng nutrients	into energy a	ind essential			
	biomolecules like	ATP, crucia	1 for micro	organism su	rvival. Key			
	pathways like glycol	ysis and the	Krebs cycle	drive energy	production.			
	Microbes adapt to diverse environments by utilizing various carbon and							
	nitrogen sources. U	Inderstanding	g microbial	metabolism	is vital for			
	biotechnology, indust	try, and envi	conmental sol	utions.				

Course Outcomes (CO):

-

CO	CO Statement	Cognitive	Knowledge	Evaluation					
		Level*	Category#	Tools used					
CO1	Explain the nutritional requirements and types of bacteria based on energy, carbon, and electron sources.	U	F	Internal Exam, Assignment, End Semester Exam					
CO2	Describe key metabolic pathways, including respiration and fermentation in microbial systems.	U	С	Internal Exam, Assignment, End Semester Exam					
CO3	Analyze chemoheterotrophic and chemolithotrophic metabolism, focusing on energy production mechanisms.	An	С	Internal Exam, End Semester Exam					
CO4	Evaluate microbial metabolic strategies in environmental adaptation and biotechnological applications.	E	М	Internal Exam, End Semester Exam					
CO5	Perform and interpret experiments related to microbial growth curves, biofilm formation, and metabolic pathways.	Ар	Р	Practical Assessment					
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Fa	ctual Knowledge(F) Conceptual Knowled	lge (C) Proce	dural Knowled	ge (P)					

÷

.

Metacognitive Knowledge (M)						
Detailed S	Syllabus	:		_		
Module	Unit	Content	Hrs (45+30)	Marks (70)		
Ι	Nutrit	ional requirements of bacteria	10	15		
	1	C, electron, energy, and minerals. Nutritional types of				
		bacteria- based on the requirement and their combinations				
	2	Modes of bacterial nutrition.				
	3	Transport of nutrients by bacteria				
	4	Passive, active and group translocation				
	5	Symport, antiport and uniport, electrogenic and				
		electroneutral transport, transport of iron				
II	Chem	oheterotrophic Metabolism - Aerobic Respiration	10	15		
	6	Concept of aerobic respiration				
	7	Sugar degradation pathways i.e. EMP, ED, Pentose				
		phosphate pathway. TCA cycle.				
	8	Electron transport chain				
	9	Components of respiratory chain, comparison of				
		mitochondrial and bacterial ETC, electron transport				
	<u> </u>	phosphorylation		• • •		
III	Cheme	oheterotrophic Metabolism- Anaerobic respiration and	15	20		
	termei					
	10	Anaerobic respiration with special reference to dissimilatory				
	11					
	11	Fermentation - Alcohol termentation				
	12	Pasteur effect;				
	13	Lactate fermentation				
	14	Homotermentative				
	15	Concept of linear and branched fermentation pathways.				
117	16	Heterofermentative pathways	10	20		
IV		Sutnotrophic and Phototrophic Metabolism	10	20		
	1/	Introduction to aerobic and anaerobic chemolithotrophy				
	18	Hydrogen oxidation (definition and reaction) and methonogenesis (definition and reaction)				
	10	Introduction to phototrophic matchelism				
	20	Groups of phototrophic microorganisms				
	20	Anovygonique ovygonia photogynthosis with reference to				
	21	photosynthesis in green bacteria				
	22	Purple bacteria and cyanobacteria				
V	Practi	ral Applications in Microbiology	30			
	1	Growth curve of bacteria	••			
	2	Carl abridge formantation by 1'fformation by				
	2	Thermal death point. Thermal death time				
	5	r nermai deain point, i nermai death time				

-

Reference :

-

- Madigan, M. T., & Martinko, J. M. (2014). *Brock Biology of Microorganisms* (14th ed.). PrenticeHall International Inc.
- Moat, A. G., & Foster, J. W. (2002). *Microbial Physiology* (4th ed.). John Wiley & Sons.
- Reddy, S. R., & Reddy, S. M. (2005). *Microbial Physiology*. Scientific Publishers India.
- Gottschalk, G. (1986). Bacterial Metabolism (2nd ed.). Springer Verlag.
- Stanier, R. Y., Ingrahm, J. I., Wheelis, M. L., & Painter, P. R. (1987). *General Microbiology* (5th ed.). McMillan Press.

	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3		3	2	3		3		
CO2	3		2	3	3	3	3	2	1			
CO3	3	3		2	3	2	3	1			2	
CO4	2	3		3		3	3	2	2			
CO5		3	3	3		1	2	3	3			

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

	Internal Exam	Assignment	Practical Assessment	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark			\checkmark
CO5			\checkmark	

MBY3MN201-APPLIED MICROBIOLOGY

Programme	B. Sc. Microbiology									
Course Code	MBY3MN201	MBY3MN201								
Course Title	APPLIED MICROBIOL	JOGY								
Type of Course	Minor									
Semester	111	111								
Academic Level	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	3	-	2	75					
Pre-requisites										
Course Summary	This course introduces students to the application of microbiology in various fields such as air, water, food, and industrial microbiology. Students will learn about microbial interactions with the environment, methods for controlling microbial growth, and the role of microbes in industrial processes.									

Course Outcomes (CO):

.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used	
CO1	Understand the significance of air, water, and food microbiology in public health.	U	C	Internal Exam, Assignments	
CO2	Describe the microbial processes and their control in industrial microbiology.	U	С	Internal Exam, Assignments, Practical Assessments	
CO3	Apply techniques for analyzing and controlling microbial contamination in various environments.	Р	Practical Assessments, Project Evaluation		
CO4	Analyze methods of food preservation and the role of microorganisms in food spoilage and foodborne diseases.	An	С	Internal Exam, End Semester Exam	
CO5	Evaluate the impact of microbial biotechnology in the development of industrial products.	Е	С	Internal Exam, Project Evaluation	
* - Ren # - Fac Knowle	nember (R), Understand (U), Apply (Ap), Ar etual Knowledge(F) Conceptual Knowledge edge (M)	nalyse (An), I (C) Procedu	Evaluate (E), C ral Knowledge	reate (C) e (P) Metacognitive	

Detailed Syllabus:

Module	Unit	Content	Hrs (45+30)	Marks (70)
	Air m	icrobiology	6	
т	1	Air microflora- sources, factors affecting air microflora	1	
Ι	2	Enumeration of microorganisms in air- settling under gravity, centrifugation, impingement, filtration, electrostatic precipitation.	3	

	3	Air borne diseases - bacterial, fungal and viral	2	
II	Wate	r microbiology	12	15
	4	Factors affecting microbial population in natural water-	2	
		temperature, light, hydrogen concentration, pressure,		
	5	salinity, nutrients, turbidity.	2	
	5	Purification of water - aeration, sedimentation,	3	
	6	Wate water treatment primary secondary and tertiony	2	
	0	stages	3	
	7	Disinfection of drinking water	1	
	/	Distinction of drinking water	1	
	8	Bacteriological techniques for examination of water	1	
		potability- MPN		
	9	Indicator organisms, BOD	2	
III	Food	microbiology	14	25
	10	Food as a substrate for microorganisms	1	
	11	Microorganisms important in food microbiology - molds,	2	
		yeast, bacteria.		
	12	Contamination of foods	2	
	13	Spoilage of food - chemical changes caused by	2	
		microorganisms		
	14	Spoilage of milk, meat and fish	3	
	15	Methods of food preservation - physical and chemical	2	
		preservatives.		
	16	Food poisoning - bacterial	2	
IV	Indus	strial microbiology	13	15
	17	Advantages of microbial processs over chemical process	1	
	18	Fermentor - basic function, structure and working	2	
	19	Culture systems - batch, continuous anf fed-batch	1	
	20	Production of - penicillin, vitamin-B12, citric acid and	5	
		baker's yeast, SCP		
	21	Steroid biotransformation	1	
	22	Downstream process	3	
\mathbf{V}	Pract	ical Applications in applied microbiology	30	
	1	Study of air microflora		
	2	Water potability test - MPN method		
	3	BOD		
	4	Aerobic mesophilic count of milk and fish		
	5	MBRT		

Reference Books :

- 1. Brock, T. D., Madigan, M. T., Martinko, J. M., & Parker, J. (2020). Brock Biology of Microorganisms (16th ed.). Pearson.
- 2. Singleton, P., & Sainsbury, D. (2020). *Dictionary of Microbiology and Molecular Biology* (4th ed.). Wiley.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). *Microbiology: An Introduction* (13th ed.). Pearson.
- 4. Prescott, L. M., Harley, J. P., & Klein, D. A. (2018). *Microbiology* (9th ed.). McGraw-Hill Education.
- 5. Atlas, R. M. (2010). Principles of Microbiology (2nd ed.). Mosby.
- 6. Madigan, M. T., & Martinko, J. M. (2015). *Brock Biology of Microorganisms* (15th ed.). Pearson.

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	1	2	1		2	1	3		3	2
CO2	3	1	2		2		3	2	2	1	3	1
CO3	1	2	3			1	2	3	2	3	2	
CO4		3	1	3			1	2	3	2	1	3
CO5	2		3	1	3			1	2	3	3	2

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

со	Internal Exam	Assignments	Practical Assessments	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark
CO3			\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark
CO5	\checkmark			\checkmark
No	Course	Sem	Code	Title
----	---------	-----	------------	----------------------------------
1	GFC-MDC	Ι	MBY1FM 105	Microorganisms in Daily life
2	GFC-MDC	II	MBY2FM 106	Applied Microbiology
3	GFC-VAC	III	MBY3FV 108	Microbial soild waste management
4	GFC-VAC	IV	MBY4FV 110	Fermented Foods
5	GFC-SEC	V	MBY5FS 112	Entrepreneurial Microbiology
6	GFC-SEC	VI	MBY6FS 113	Clinical Microbiology

GENERAL FOUNDATION COURSES

÷.

MBY1FM 105-MICROORGANISMS IN DAILY LIFE

Programme	B. Sc. Microbiology				
Course Code	MBY1FM 105				
Course Title	Microorganisms in D	aily life			
Type of Course	MDC				
Semester	Ι				
Academic Level	100-199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	3	3	-	-	45
Pre-requisites	Nil				
Course	This course offers	an introd	uction to	the invisible	world of
Summary	microorganisms and	their profour	nd effects on	our daily live	es. From the
	food we eat to the env	vironment we	e inhabit, mic	roorganisms p	lay essential
	roles that are often overlooked. Students will gain an understanding of the				
	basic biology of mice	roorganisms,	their ecolog	ical importan	ce, and their
	applications in medic	ine, industry	, and environ	mental manag	gement.

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Describe the fundamental characteristics and classifications of microorganisms.	U	F	Internal Exam, End Semester Exam			
CO2	Explain the role of microorganisms in human health, including their impact on disease and immunity.	U	С	Internal Exam, Assignments			
CO3	Discuss the beneficial applications of microorganisms in food production, biotechnology, and industry.	U	С	Assignments, End Semester Exam			
CO4	Evaluate the environmental impact of microorganisms in ecosystems, biodegradation, and waste management.	An	С	Internal Exam, End Semester Exam			
CO5	Identify and analyze the challenges and future prospects of microbial applications in addressing global issues.	An	С	Assignments, End Semester Exam			
* - Re # - Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

.

Detailed Syllabus:

Module	Unit	Content	Hrs (33+12)	Marks (50)
Ι	Intro	duction to Microbiology	5	10
	1			
	1			
	2			
	2			
	2	Deriveen prokaryotes and eukaryotes.		
	5	and gong functions		
	4	Microbial Growth: Easters affecting microbial growth and		
	4	reproduction		
	5	Environmental Microbiology: Roles of microorganisms in		
	5	cosystems		
п		cosystems.	10	15
11	Micro	porganisms and Human Health	10	15
	6	Dethogonia Microorganisms: Destaria viruses and fungi		
	0	that cause diseases		
	7	Antibiotics and Antibiotic Posistence: Machanisms and		
	/	Antibiotics and Antibiotic Resistance. Mechanishis and		
	0	The Human Microbioma: Panaficial affects of		
	0	microorganisms on human health		
	0	Impundant Basics: How the body defends itself against		
	9	minutology Basics. How the body detends itself against microbial infections.		
	10	Vaccines: Role of microorganisms in vaccine		
		development.		
	11	Emerging Infectious Diseases: New challenges in		
		microbial infections.		
III			10	15
	Appli	ed Microbiology		
	12	Food Microbiology: Microorganisms in food production		
		and spoilage.		
	13	Industrial Microbiology: Use of microbes in the production		
		of chemicals and pharmaceuticals.		
	14	Agricultural Microbiology: The role of microbes in		
		agriculture and soil fertility.		
	15	Bioenergy: Microbial production of biofuels.		
	16	Bioremediation: Microorganisms used in pollution control		
		and cleanup.		
	17	Bioremediation of oil spills and heavy metal contamination		
IV			8	10
	Ethic	al and Social Implications of Microbiology		
	18	Biotechnology in Microbiology: Genetic modification of		
		microorganisms.		

	19	Bioethics: Ethical issues in the manipulation of microbial		
		life.		
	20	Public Health: Microbiology in the context of public health		
		policy.		
	21	Microorganisms in Biowarfare: Historical and current		
		perspectives.		
	22	Future of Microbiology: Innovations and upcoming		
		research fields.		
V	Open	Ended	12	
	1			

Books and References:

- 1. Atlas, R. M., & Bartha, R. (2021). *Microbial ecology: Fundamentals and applications* (5th ed.). Benjamin Cummings.
- 2. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2020). *Brock biology of microorganisms* (16th ed.). Pearson.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2021). *Microbiology: An introduction* (14th ed.). Pearson Education.
- 4. Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2017). *Prescott's microbiology* (10th ed.). McGraw-Hill Education.
- 5. Black, J. G. (2018). *Microbiology: Principles and explorations* (10th ed.). Wiley.

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1		2	
CO2	2	3		1			2	3	2	1	3	
CO3	1		3	2			1		3	2	2	1
CO4		1	2	3				2		3	1	2
CO5				3	2	1		1	2		3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics :

CO	Internal Exam	Assignment	End Semester Exam
CO1	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4		\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark

MBY2FM 106. APPLIED MICROBIOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY2FM106					
Course Title	APPLIED MICROB	IOLOGY				
Type of Course	MDC					
Semester	II					
Academic Level	100-199					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	3	3	-		45	
Pre-requisites						
Course Summary	This course provides	s an introduc	tion to vario	us fields of m	icrobiology,	
	focusing on the application of microbes in food, air, water, and industrial					
	processes. Students will gain foundational knowledge about microbial					
	ecology, the princi	iples of mi	icrobial grov	wth, and the	eir practical	
	applications.					

Course Outcomes (CO):

÷

CO	CO Statement	Cognitive	Knowledge	Evaluation		
		Level*	Category#	Tools used		
CO1	Describe the types and roles of microorganisms in air, understanding their sources, distribution, and methods of sampling.	U	С	Internal Exam, Assignments		
CO2	Explain the ecological and microbiological aspects of aquatic environments, including water purification processes.	U	С	Internal Exam, Assignments		
CO3	Analyze the factors influencing microbial growth in food and discuss methods of food preservation.	An	С	Internal Exam, End Semester Exam		
CO4	Outline the basic principles and applications of industrial microbiology, focusing on fermentors and industrially important microorganisms.	U	С	Internal Exam, Assignments		
CO5	Evaluate the impact of microorganisms on food substrates, detailing the processes of spoilage and fermentation.	An	С	Internal Exam, End Semester Exam		
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

-

Module	Unit	Content	Hrs	Marks
			(33+12)	(50)
	Micro	biology of air	5	10
	1	Atmospheric layers, organisms in air, distribution and		
		sources		
Ι	2	Indoor and outdoor air; droplet nuclei, aerosol and		
		infectious dust		
	3	Microbiological sampling of air -gravity slide, plate		
		exposure and filtration		
II	Aquat	ic microbiology	8	10
	4	Distribution of microorganisms in aquatic environment		
		- fresh water, estuarine and marine water systems		
	5	Factors influencing growth and distribution -		
		temperature, light, turbidity etc		
	6	Purification of water - aeration, sedimentation,		
		coagulation, flocculation, sand filtration		
	7	Disinfection of drinking water		
	8	Bacteriological techniques for examination of water		
	9	Concept of indicator organisms		
III	Food	microbiology	10	15
	10	Food as a substrate for microorganisms- types of		
		microorganisms in food		
	11	Sources of contamination of foods		
	12	Factors influencing microbial growth in food - extrinsic		
		and intrinsic		
	13	Microbial examination of food- viable colony count		
	14	Fermented foods - bread, idli, cheese		
	15	Spoilage of different foods - meat, fish and egg		
	16	Methods of food preservation - physical and chemical		
		preservatives.		
IV	Indust	trial microbiology	10	15
	17	Fermentor - basic function, structure and working		
	18	Types of fermentors - batch, fed-batch and continuous		
	19	Industrially important microorganisms		
	20	Primary screening techniques		
	21	Secondary screening techniques		
		Production of - penicillin, vitamin-B12, and baker's		
	22	yeast		
V	Open	Ended	12	
	Case	study analysis- Food/water infection outbreaks		
	Air qu	ality management strategies		
	Discu	ssion on fermented food products		

Reference Boks:

- 1. Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2017). *Brock Biology of Microorganisms* (15th ed.). Pearson Education.
- 2. Willey, J., Sherwood, L., & Woolverton, C. J. (2017). *Prescott's Microbiology* (10th ed.). McGraw-Hill Education.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2018). *Microbiology: An Introduction* (13th ed.). Pearson Education.
- 4. Atlas, R. M. (2010). Principles of Microbiology (2nd ed.). Mosby Year Book.
- 5. Singleton, P., & Sainsbury, D. (2020). *Dictionary of Microbiology and Molecular Biology* (4th ed.). Wiley.
- 6. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (1993). *Microbiology: Concepts and Applications*. McGraw-Hill.

PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PO1 PO2 PO3 PO4 PO5 CO **PO6** CO1 3 3 2 2 1 CO₂ 2 2 2 3 CO3 3 3 2 3 3 3 3 CO4 3 1 3 3 2 3 3 3 CO5 3 3

Mapping of COs with PSOs and POs:

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics:

СО	Internal Exam	Assignments	End Semester Examination
CO1	\checkmark	\checkmark	
CO2	\checkmark	\checkmark	
CO3	\checkmark		\checkmark
CO4	\checkmark	\checkmark	
CO5	\checkmark		\checkmark

MBY3FV 108 MICROBIAL SOLID WASTE MANAGEMENT

Programme	B. Sc. Microbiology						
Course Code	MBY3FV 108						
Course Title	Microbial soild waste	managemen	ıt				
Type of Course	VAC						
Semester	III						
Academic Level	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	3	3	-	-	45		
Pre-requisites	Nil						
Course	This course introdu	ces students	to the pri	nciples and	practices of		
Summary	microbial solid was	te managem	ent with a	focus on er	vironmental		
	microbiology. Studen	microbiology. Students will gain knowledge about various types of solid					
	waste, their sources,	waste, their sources, impacts on the environment and human health, and					
	innovative microbial	-based soluti	ons for was	te treatment a	and resource		
	recovery.						

Course Outcomes (CO):

÷.

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Understand basic concepts and principles of solid waste management.	U	С	Quizzes, Internal Exam			
CO2	Identify different types of waste and describe their impacts on the environment and public health.	U	F	Assignments, Internal Exam			
CO3	Describe basic waste treatment, recycling, and resource recovery methods.	U	С	Assignments, End Semester Exam			
CO4	Recognize the importance of policies, community involvement, and education in waste management.	U	С	Internal Exam, End Semester Exam			
CO5	Discuss future trends and innovations in waste management.	U	F	Quizzes, End Semester Exam			
* - Re # - Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

.

Module	Unit	Content	Hrs (33+12)	Marks (50)
Ι	Intro	duction to Solid Waste Management	5	10
	1	Overview of Solid Waste Management - Definitions and importance.		
	2	Types of Solid Waste - Characteristics and sources.		
	3	Environmental Impact of Solid Waste - Basics of ecological effects.		
	4	Health Impacts of Solid Waste - Introduction to public health concerns.		
	5	Principles of Sustainable Waste Management - Introduction to the 3Rs (Reduce, Reuse, Recycle).		
Π	Solid	Waste Collection and Treatment	10	10
	6	Waste Collection Techniques - Basic methods and practices.		
	7	Waste Segregation and Storage - Importance and methods.		
	8	Overview of Waste Treatment Methods - Landfill, Incineration, and Composting.		
	9	Recycling Basics - Processes and benefits.		
	10	Introduction to Resource Recovery - Simple techniques for material recovery.		
	11	Composting - Basic principles and methods.		
III	Solid	Waste Policies and Public Health	10	10
	12	Waste Policy and Regulation - Overview of governmental policies.		
	13	Community Involvement in Waste Management - Role of public participation.		
	14	Waste Management and Public Health - Basic connections and preventive measures.		
	15	Case Studies on Waste Management Strategies - Simple examples from various regions.		
	16	Challenges in Waste Management - Common issues and potential solutions.		
IV	Futur	re Trends in Waste Management	8	10
	17	Innovations in Recycling - New trends in material recycling.		
	18	Advances in Biological Treatment Techniques - Basic introduction to new biotechnologies.		
	19	Phytoremediation - Using plants in waste management (simple overview).		
	20	Role of Education in Waste Management - Importance of awareness and training.		
	21	Future Challenges and Opportunities - Discussion on upcoming trends.		
	22	Review and Course Wrap-up - Recap of key concepts and forward look.		

•

V	Open	Ended	12	10
	1	PPreparation of composting pits/Biogas plants/Landfills etc		
	2	Waste management policies and execution-discussion		

Books and References:

- 1. Tchobanoglous, G., Theisen, H., & Vigil, S. (1993). *Integrated Solid Waste Management: Engineering Principles and Management Issues*. McGraw-Hill.
- 2. Vesilind, P. A., Worrell, W., & Reinhart, D. (2002). Solid Waste Engineering. Brooks/Cole.
- 3. Williams, P. T. (2005). Waste Treatment and Disposal. John Wiley & Sons.
- 4. Diaz, L. F., de Bertoldi, M., Bidlingmaier, W., & Stentiford, E. (2007). *Compost Science and Technology*. Elsevier.
- 5. Kreith, F., & Tchobanoglous, G. (2002). *Handbook of Solid Waste Management*. McGraw-Hill Professional.
- 6. Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). *What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050*. Urban Development Series. World Bank.

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1		1			3	2	1		2	1
CO2	2	3	1				2	3	2	1	1	
CO3	1	2	1	1			1	2	1	2	1	
CO4	2	1	2		1		2	1	2	1	2	1
CO5	1	1	1	2			1	1	1	2	2	2

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

Mapping of <u>COs to Assessment Rubrics :</u>

CO	Internal Exam	Assignment	End Semester Exam
CO1	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5			\checkmark

MBY4FV110. FERMENTED FOODS

Programme	B. Sc.	B. Sc. Microbiology						
Course Code	MBY4	MBY4FV110						
Course Title	Ferme	nted Foods						
Type of Course	VAC							
Semester	IV							
Academic Level	200-29)9						
Course Details	Cred	Cred Lecture per week Tutorial Practical Total F						
	it		per week	per week				
	3	3	-	-	45			
Pre-requisites	Nil							
Course	This c	course offers an int	troduction to th	ne world of fer	mented foods,			
Summary	highlig	ghting their histor	ical significant	ce, health bene	efits, and the			
	microo	organisms that play	a crucial role in	their production	. Students will			
	learn about the production processes of various fermented dairy, meat,							
	vegeta	vegetable products, and beverages, with a focus on the applied						
	microł	biological aspects.						

Course Outcomes (CO):

•

СО	CO Statement	Cognitive	Knowledge	Evaluation				
CO1	Understand the basic concepts of fermented foods and their health benefits.	U	C C	Internal Exam, Assignments				
CO2	Describe the production and microorganisms involved in fermented dairy products.	U	С	Internal Exam				
CO3	Outline the fermentation processes for meat and vegetable products.	U	С	Internal Exam, Assignments				
CO4	Explain the production methods and microbiology of fermented beverages and cereals.	U	С	Assignments, End- Semester Exam				
CO5	Assess the nutritional benefits and microbiological aspects of various fermented foods.	U	С	Internal Exam, Assignments, Projects				
*- Ret #- Fa Metao	*- Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) #- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Detailed Syllabus:

•

Module	Unit	Content	Hrs	Marks
			(33+12)	(50)
Ι	Basic	concepts of fermented food	5	10
	1	History of fermented foods		
	2	Properties of fermented food.		
	3	Different microorganisms involved in		
		fermentation		
	4	Starter and non-starter cultures		
	5	Health Benefits of fermented foods		
II	Ferm	ented Dairy products	10	15
	6	Cheese		
	7	Buttermilk, Curd		
	8	Yogurt		
	9	Sour cream, Kefir		
	10	Brief account of Microorganisms involved and		
	10	steps in the production		
	11	Nutritional Benefits of fermented dairy products		
III	Ferm	ented Meat and vegetables	8	10
	12	Fermented sausage		
	13	Sauerkraut		
	14	Kimchi		
	15	Fermented pickles		
	16	Brief account of Microorganisms involved and		
		steps in the production		
IV	Ferm	ented Beverages and Cereal products	10	15
	17	Beer fermentation Types. Microorganisms		
		involved and steps in production.		
	18	Wine fermentation.		
	19	Fermented Cereal products- Bread		
	20	Idli		
	21	Types of Microorganisms involved and steps in		
		production.		
	22	Definition of Probiotics and prebiotics.		
V	Open	Ended	12	
	Visit t	o food processing industries		
	Surve	y and analysis on fermented food products in the		
	marke	t		

Books and References:

- 1. Hutkins, R. W. (2019). *Microbiology and Technology of Fermented Foods* (2nd ed.). Wiley-Blackwell.
- 2. Adams, M. R., & Moss, M. O. (2018). *Food Microbiology* (4th ed.). Royal Society of Chemistry.
- 3. Frazier, W. C., & Westhoff, D. C. (2016). *Food Microbiology* (5th ed.). McGraw-Hill Education.
- 4. Robinson, R. K. (2017). Dairy Microbiology Handbook (3rd ed.). Wiley.

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO6	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO1	3		2				2		1			
CO2		3		2			1	2				
CO3	1		3					1	2			
CO4			1	3	2			3	1	2		
CO5		1			3	2	1		2	3		

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal	Assignmen	Project	End	Semester
	Exam	t	Evaluation	Examinations	
CO1	\checkmark	\checkmark		\checkmark	
CO2	\checkmark			\checkmark	
CO3	\checkmark	\checkmark		\checkmark	
CO4		\checkmark		\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

MBY5FS 112. ENTREPRENEURIAL MICROBIOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY5FS 112					
Course Title	Entrepreneurial Micro	obiology				
Type of Course	SEC					
Semester	V					
Academic Level	300 - 399					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	3	3	-	-	45	
Pre-requisites	Knowledge in Basic I	Microbiology	7 Techniques	and Manager	ial	
	Economics					
Course	This course aims to b	olend microb	iology with e	entrepreneursl	nip, teaching	
Summary	students how to turn	students how to turn scientific discoveries into marketable products. It				
	covers the journey from concept to commercialization, focusing on					
	creating sustainable	and cost-	effective so	lutions using	g microbial	
	technologies.					

Course Outcomes (CO):

•

CO	CO Statement	Cognitive	Knowledge	Evaluation			
		Level*	Category#	Tools used			
	Understand the entrepreneurial			Internal			
CO1	landscape and the role of microbiology	U	С	Exam,			
	in entrepreneurship.			Assignments			
				Internal			
CO2	Analyze the process of product	A	C	Exam, End			
	development from microbial resources.	All	C	Semester			
				Exam			
	Evaluate market dynamics and			Case Studies,			
CO3	strategies for commercializing	An	С	Internal			
	microbiological products.			Exam			
	Discuss the regulatory and ethical			Internal			
CO4	frameworks relevant to microbial	U	С	Exam,			
	entrepreneurship.			Assignments			
	Critically anomina and studies of			Internal			
CO5	Critically examine case studies of	Е	С	Exam, Case			
	successful microbial enterprises.			Studies			
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metao	cognitive Knowledge (M)	· ·	_				

.

Module	Unit	Content	Hrs (33 +12)	Marks (50)
Ι	Entre	preneurship in Microbiology	5	8
	1	Entrepreneurial society: Development and activity		
	2	Institutions involved in entrepreneurial development		
	3	Government contributions to entrepreneurs		
	4	Risk assessment in entrepreneurship		
	5	Entrepreneur development frameworks		
II	Micro	bial Products and Innovation	5	8
	6	Bread baking and fermentation processes		
	7	Rye bread, San Francisco dough Bread		
	8	Idli and dosa fermentation details		
	9	Fermented fish products: Ngari, Hentak, Tungtap, Gnuchi		
	10	Patenting: Basics and history		
III	Cultiv	vation and Utilization of Microbial Processes	10	14
	11	Mushroom cultivation techniques		
	12	Cultivation of Agaricus campestris and Agaricus		
	13	Alcoholic products and their cultural significance		
	13	Production processes of Apong Kodokojaanr Xajnani		
	15	Grape wine and other fruit wines		
IV	Adva	nced Entrepreneurial Practices in Microbiology	13	20
	16	Market analysis and commercialization strategies		
	17	Intellectual property rights in microbiology		
	18	Fermentation economics		
	19	Bioentrepreneurship: Scope, challenges, and		
		opportunities		
	20	Innovation and sustainable business models in microbiology		
	21	Case studies of successful microbiology-based		
	22	Future trends and opportunities in microbial		
		entrepreneurship		
V	Ethica Entre	al and Regulatory Considerations in Microbiology	12	
	Datant	t filing for microbial products		

•

Books and References:

- 1. Bell JR (2010) Handbook of bioentrepreneurship (Book Review). N Engl J Entrep 13:1–2
- 2. Bogoro SE (2015) Entrepreneurship for development. Convocation lecture delivered at the 2nd convocation ceremony of the Kaduna. State University Kaduna
- 3. Eniola AA (2018) Entrepreneur-SME manager traits and sources of financing. In: Ratten V, Dana LP, Honyenuga B (eds) African entrepreneurship: challenges and opportunities for doing business, 1st edn. Springer, Cham
- 4. Life Science Austria (2017) The international Biotech & Medtech Business Plan Handbook Austria Wirtschafts service GesellschaftmbH
- 5. Prescott LM, Harley JP, Klein DA (2005) Microbiology, 6th edn. McGraw Hill Publishers, New York. pp. 2 and 12
- 6. Rama VS (2009) Job prospects in microbiology.
- 7. Shimasaki CD (2009) The business of bioscience what goes into making a biotechnology product? Springer, pp 9–26
- 8. Steven MF, Uma SK (2014) Licensing the technology: biotechnology commercialization strategies using university and Federal labs. In: Biotechnology entrepreneurship. Elsevier, pp 185–206
- 9. Stanbury, P.F, and Whitekar. A. (1999), Principles of Fermentation Technology, 2nd Edition. Butterworth-Heinemann: Oxford.
- 10. Stockholm, K.T.H., Sven-OlofEnfors, and Lena Haggstrom. (2000), Bioprocess Technology: Fundamentals and Applications, Royal Institute of Technology: Sweden.
- 11. Ashton Acton, Q., (2012). Biological Pigments– Advances in Research and Application. Scholarly Editions: Atlanta, Georgia.

СО	PS 01	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1		2		2	1	3		2	
CO2	3	2		1	3		3	2	2	1	3	
CO3	1	3		2		3	1	3	3	2	3	2
CO4		2	3		1	2		3	2	3	1	3
CO5	3		2	3		1	3	2	3	3	3	3

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

÷.

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics :

СО	Internal Exam	Assignmen ts	Case Studies	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark		\checkmark	
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark		\checkmark	

MBY6FS 113. CLINICAL MICROBIOLOGY

Programme	B. Sc	e. Microbiology							
Course Code	MBY	MBY6FS 113							
Course Title	Clini	cal Microbiology							
Type of Course	SEC								
Semester	VI								
Academic Level	100 -	· 199							
Course Details	Cre	Lecture per week	Tutorial	Practical	Total Hours				
	dit		per week	per week					
	3	3	-	-	45				
Pre-requisites	Nil								
Course Summary	This emph ident equip micro micro	course introduces nasizing laboratory ification, and under os students with obiological tests an obial infections.	the fundament safety, diag standing the mi the knowledge d to understan	tals of clinical nostic techniqu crobial etiology e to perform d the clinical in	microbiology, nes, pathogen of diseases. It and interpret mplications of				

Course Outcomes (CO): .

CO	CO Statement	Cognitive	Knowledge Category#	Evaluation Tools				
CO1	Identify the basic principles of laboratory safety and biological agent classification.	U	F	Quizzes, Internal Exam				
CO2	Describe standard practices for specimen collection, transport, and processing.	U	F	Assignments, Internal Exam				
CO3	Recognize the normal microbial flora and its role in human health and disease.	U	С	Assignments, Practical Assessments				
CO4	Distinguish between various types of infectious diseases using clinical examples.	U	F	Internal Exam, End Semester Exam				
CO5	Outline basic diagnostic techniques used in clinical microbiology.	U	F	Assignments, End Semester Exam				
* - Re # - Fa Metao	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(33+12)	(50)
Ι	Microb	piology laboratory safety	5	10
	1	Biological Safety Cabinets; Biocontainment,		
		Biosafety Levels; Biosafety guidelines		
	2	biosafety concerns at the level of individuals,		
		institutions		
	3	Laboratory and associated infections		
	4	Good microbiological practices		
	5	Classification of biological agents based on hazards.		
		Mailing of biohazardous materials		
II	Diagno	ostic cycle	10	10
	6			
		and processing		
	7	Infection control, Emerging infections		
	8	Quality assurance & quality control in microbiology,		
		Accreditation of laboratories		
	9	Normal microbial flora of the human body		
III	Etiolog	gy, pathogenesis and laboratory diagnosis	10	10
	10	Blood Stream infections		
	11	Respiratory Tract infections		
	12	Central Nervous System infections		
	13	Gastrointestinal Tract infections		
	14	Urinary Tract infections & Genital Tract infections		
	15	Sexually transmitted diseases.		
	16	Nosocomial infections.		
IV	Infectio	ons of different sites	8	10
	17	Skin, soft tissue and wound infections		
	18	Burn infections. Infections of sinuses, bone and bone		
		marrow.		
	19	Infections of eye and ear		
	20	Pyogenic infections		
	21	Infections in immunocompromised and		
		immunodeficient patients		
	22	Infections in foetus and neonates.		
V	Open H	Ended	12	10
	1	Serodiagnosis of infectious diseases		
	2	Molecular techniques in diagnostic microbiology.		
	3	Automation in Microbiology		
	4	Laboratory control of antimicrobial therapy		
	5	Immunoprophylaxis,		
	6	Immunity in infections		

Books and References

- 1. Lennette, E. H., Balows, A., Hausler, W. J., Jr., & Shadomy, H. J. (Eds.). (1985). Manual of clinical microbiology (4th ed.). American Society for Microbiology.
- 2. Blair, J. E., Lennette, E. H., & Truant, J. P. (1970). Manual of clinical microbiology. American Society for Microbiology.
- 3. Gradwohl, R. B. H., Sonnenwirth, A. C., & Jarett, L. (1980). Gradwohl's clinical laboratory methods and diagnosis (8th ed.). Mosby.
- 4. Topley, W. W. C., Wilson, G. S., Parker, M. T., & Collier, L. H. (1990). Topley and Wilson's principles of bacteriology, virology and immunology (8th ed.). Edward Arnold.
- 5. Mukherjee, K. L. (2010). Medical laboratory technology (2nd ed.). Tata McGraw-Hill Education.
- 6. Sood, R. (1999). Medical laboratory technology: Methods and interpretations (5th ed.). Jaypee Brothers Medical Publishers.
- 7. Cheesbrough, M. (2006). District laboratory practice in tropical countries (2nd ed.). Cambridge University Press.
- 8. Mackie, T. J., McCartney, J. E., & Collee, J. G. (1989). Mackie & McCartney practical medical microbiology (13th ed.). Churchill Livingstone.
- 9. Black, J. G. (1999). Microbiology: Principles and explorations (4th ed.). Prentice Hall International.
- 10. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby immunology (6th ed.). W.H. Freeman.
- 11. Forbes, B. A., Sahm, D. F., Weissfeld, A. S., & Bailey, W. R. (2007). Bailey & Scott's diagnostic microbiology (12th ed.). Elsevier Mosby.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6
CO1	2	1		1			2	1			1	
CO2	1	2		1			1	2	1			
CO3	2	1	1				1	1	1	2	1	
CO4	1	2	2				1	2	1	1		1
CO5	1	1	2	1			1	1	2	1	1	

Mapping of COs with PSOs and POs :

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	End Semester Exam
CO1	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	
CO4			\checkmark
CO5		\checkmark	\checkmark

University of Calicut I Semester B.Sc. (CUFYUGP) Microbiology Honors Degree Examinations October 2024 MBY1CJ 101/ MBY1MN100: Introduction to Microbiology (credits: 4) Maximum Time: 2 hours Maximum Marks: 70

Section A (Answer All. Each question carries 3 marks) (Ceiling 24 marks)

- 1. Define bacterial cell arrangement and provide examples.
- 2. Describe the morphological features of fungi, focusing on molds and yeasts.
- 3. Discuss the concept of spontaneous generation and its historical significance
- 4. Explain the contributions of Anton van Leeuwenhoek to microbiology.
- 5. Explain the structure and function of the gram-positive bacterial cell wall.
- 6. Differentiate between archaebacteria and eubacteria.
- 7. What is the role of beneficial microbes in the food industry?
- 8. What is the lytic cycle of bacteriophages? Explain briefly.
- 9. Discuss the role of mycorrhizae in agriculture.
- 10. What are biocontrol agents, and how do they function in microbial management?

Section B (Answer All. Each question carries 6 marks) (Ceiling: 36 Marks)

- 11. Discuss the differences between prokaryotic and eukaryotic cell structures, giving relevant examples.
- 12. Explain the process of sporulation in bacteria and the role of endospores in survival.
- 13. Describe the historical significance of Joseph Lister and Paul Ehrlich's contributions to microbiology.
- 14. Explain the structure and function of bacterial cell membranes.
- 15. Discuss the roles of beneficial microorganisms in the pharmaceutical industry.
- 16. Explain the structure and function of cytoplasmic components such as ribosomes and inclusion bodies in bacteria.
- 17. What are the applications of biopesticides in agriculture, and how do they contribute to sustainable farming?
- 18. Discuss the impact of pathogenic microorganisms on human and plant health, provide examples.

Section C (Answer any one. Each question carries 10 marks) (1x10=10 Marks)

- 19. Provide a detailed explanation of bacterial ultrastructure, including cell wall, membrane, and cytoplasmic structures.
- 20. Describe the roles of microorganisms in various ecosystems, focusing on their beneficial and harmful effects on the environment.

Question	Marks	CO	PSO	CL	Rubric Criteria
No.					
1	3	CO1	PSO1	Remember (R)	Define bacterial cell arrangements
					correctly with examples.
2	3	CO1	PSO1	Understand	Describe fungal morphology
				(U)	(molds/yeasts) with accuracy.
3	3	CO2	PSO2	Understand	Explain spontaneous generation and
				(U)	debates, ensuring historical accuracy.
4	3	CO2	PSO5	Remember (R)	Correctly list contributions of Anton van
					Leeuwenhoek.
5	3	CO3	PSO1	Understand	Differentiate archaebacteria from
				(U)	eubacteria, emphasizing key differences.
6	3	CO3	PSO1	Understand	Explain gram-positive cell wall structure
				(U)	thoroughly.
7	3	CO4	PSO5	Understand	Describe microbes' roles in the food
				(U)	industry with relevant examples.
8	3	CO1	PSO1	Remember (R)	Outline the lytic cycle of bacteriophages
					clearly and concisely.
9	3	CO4	PSO6	Understand	Discuss how mycorrhizae benefit
				(U)	agriculture with clear examples.
10	3	CO4	PSO6	Remember (R)	Identify biocontrol agents and their basic
					role.
11	6	CO3	PSO1	Analyze (An)	Compare prokaryotic and eukaryotic cells,
					highlighting key differences.
12	6	CO3	PSO3	Understand	Describe sporulation and the function of
				(U)	endospores accurately.
13	6	CO2	PSO5	Understand	Explain contributions of Joseph Lister and
				(U)	Paul Ehrlich to microbiology.
14	6	CO3	PSO1	Understand	Explain bacterial membrane structure and
				(U)	function comprehensively.
15	6	CO4	PSO5	Understand	Discuss applications of microbes in the
				(U)	pharmaceutical industry.
16	6	CO3	PSO1	Understand	Describe cytoplasmic structures
				(U)	(ribosomes/inclusion bodies) thoroughly.
17	6	CO4	PSO6	Apply (Ap)	Explain biopesticides and their agricultural
					applications with examples.
18	6	CO4	PSO6	Understand	Discuss how harmful microbes affect
				(U)	humans and plants, giving examples.
19	10	CO3	PSO1, 5	Analyze (An)	Provide detailed analysis of bacterial
					ultrastructure, covering key components.
20	10	CO4	PSO6	Analyze (An)	Analyze the roles of microorganisms in the
					environment, both beneficial and harmful.

Rubrics Table for Introduction to Microbiology Question Paper

University of Calicut I Semester B.Sc. (CUFYUGP) Microbiology Honors Degree Examinations October 2024 MBY1MN101: Microbial Growth (credits: 4) Maximum Time: 2 hours Maximum Marks: 70

Section A (Answer All. Each question carries 3 marks) (Ceiling 24 marks)

- 1. Define microbial growth and describe the phases of the bacterial growth curve.
- 2. What is bacterial generation time, and why is it important in microbiology?
- 3. Explain how pH affects microbial growth.
- 4. Describe how temperature influences microbial growth.
- 5. List the key environmental factors that influence microbial growth.
- 6. What is the difference between psychrophiles, mesophiles, and thermophiles based on their temperature preferences?
- 7. Explain the role of microbial enzymes in industrial fermentation processes.
- 8. What is selective media, and why is it used in microbiological studies?
- 9. Discuss the role of oxygen in the growth of aerobic and anaerobic bacteria.
- 10. What are the main methods used to measure microbial growth?

Section B (Answer All. Each question carries 6 marks) (Ceiling: 36 Marks)

- 11. Compare the different phases of the microbial growth curve and their significance.
- 12. Explain the methods used to measure microbial growth, including both direct and indirect methods.
- 13. Discuss the role of microbes in the fermentation process and their industrial applications.
- 14. How do microorganisms contribute to bioremediation? Provide examples.
- 15. Describe the classification of microbes based on their oxygen requirements, with examples.
- 16. Explain how nutrient availability affects microbial growth and metabolism.
- 17. What adaptations do microorganisms have to survive in extreme environments, such as high salt concentrations or high temperatures?
- 18. How do continuous culture systems differ from batch culture systems in industrial microbiology?

Section C (Answer any one. Each question carries 10 marks) (1x10=10 Marks)

- 19. Discuss the significance of the microbial growth curve in food preservation and industrial fermentation processes.
- 20. Explain how environmental factors, such as pH and temperature, are controlled in industrial microbiology and bioremediation.

Rubrics Table

Q No.	Marks	CO	PSO	CL	Rubric Criteria
1	3	CO1	PSO1	Remember (R)	Define microbial growth and describe the
					phases of the bacterial growth curve.
2	3	CO1	PSO1	Remember (R)	Explain bacterial generation time and its
					significance in microbiology.
3	3	CO2	PSO3	Understand (U)	Explain how pH affects microbial growth with
					examples.
4	3	CO2	PSO1	Understand (U)	Describe the effect of temperature on microbial
					growth with clear examples.
5	3	CO4	PSO5	Understand (U)	List the key factors influencing microbial
					growth, emphasizing environmental conditions.
6	3	CO2	PSO1	Understand (U)	Differentiate psychrophiles, mesophiles, and
					thermophiles based on temperature.
7	3	CO4	PSO5	Understand (U)	Explain the role of microbial enzymes in
					fermentation and industrial applications.
8	3	CO4	PSO5	Apply (Ap)	Describe the use of selective media in
					microbiology with examples.
9	3	CO3	PSO1	Understand (U)	Discuss how oxygen availability affects
	_				aerobic and anaerobic bacteria growth.
10	3	CO5	PSO3	Apply (Ap)	Explain the methods to measure microbial
	_	~ ~ .			growth, including direct and indirect methods.
11	6	CO1	PSO1	Analyze (An)	Compare the phases of microbial growth and
		<u> </u>	DCOO		explain their industrial relevance.
12	6	CO5	PSO3	Apply (Ap)	Describe techniques to measure microbial
12		GOL	D005		growth accurately with examples.
13	6	CO4	PSO5	Apply (Ap)	Discuss the role of microbes in fermentation
14	6	004	DCOC		processes and their applications.
14	6	CO4	PSO6	Analyze (An)	Analyze the contribution of microbes to
1 /	6	CO 2	DCO1		bioremediation with relevant examples.
15	0	003	PSOI	Analyze (An)	Classify microbes based on oxygen
16	6	CO2	DCO1	Analyza (An)	A network the import of nutrient queilability on
10	0	02	PS01	Anaryze (An)	Analyze the impact of nutrient availability on microbial metabolism and growth
17	6	<u>CO4</u>	DSOG	Analyza (An)	Explain the adaptations of microorganisms to
1/	0	C04	P300	Anaryze (An)	extreme environments, such as high selt or
					host
18	6	CO4	DSO7	A p n l y (A n)	Compare continuous and batch culture systems
10		04	1507	There are a second s	in industrial microbiology
10	10	CO4	PSO5	Analyze (Δn)	Discuss the role of the microbial growth curve
	10	0.04	1505		in food preservation and fermentation
					nrocesses
20	10	CO5	PSO6	Analyze (An)	Explain how nH and temperature are controlled
20		005	1500		in industrial and bioremediation settings

University of Calicut I Semester B.Sc. (CUFYUGP) Microbiology Honors Degree Examinations October 2024 MBY1FM 105: Microorganisms in Daily Life (credits: 3) Maximum Time: 1.5 hours Maximum Marks: 50

Section A (Answer All. Each question carries 2 marks) (Ceiling: 16 marks)

- 1. What are microorganisms? Give examples.
- 2. What are the differences between prokaryotes and eukaryotes?
- 3. How do microorganisms help in food production?
- 4. Define pathogenic microorganisms and give two examples.
- 5. What is antibiotic resistance? Why is it a concern?
- 6. Explain the term "bioremediation" and its environmental importance.
- 7. What role do microorganisms play in vaccine development?
- 8. List two applications of microorganisms in biotechnology.
- 9. What is the human microbiome, and why is it important?
- 10. What are the ethical concerns related to genetic modification of microorganisms?

Section B (Answer All. Each question carries 6 marks) (Ceiling: 24 Marks)

- 11. Discuss the role of microorganisms in food spoilage and methods to prevent it.
- 12. How do microorganisms contribute to the production of biofuels?
- 13. Explain how the human body defends itself against microbial infections.
- 14. . Describe the role of microorganisms in soil fertility and agriculture.
- 15. What are the mechanisms by which microorganisms cause diseases?

Section C (Answer any one. Each question carries 10 marks) (1x10=10 Marks)

- 16. Evaluate the importance of microorganisms in the ecosystem, focusing on biodegradation and waste management.
- 17. Identify and analyze the challenges and future prospects of microbial applications in addressing global issues.

Rubrics Table

Question	Marks	CO	PSO	CL	Rubric Criteria
No.		2 01	5001		
1	2	COI	PSOI	Remember	Define microorganisms and provide
				(R)	relevant examples.
2	2	CO1	PSO1	Understand	Explain the differences between
				(U)	prokaryotes and eukaryotes.
3	2	CO3	PSO5	Understand	Describe the role of microorganisms in
				(U)	food production.
4	2	CO2	PSO1	Remember	Define pathogenic microorganisms with
				(R)	examples.
5	2	CO2	PSO1	Understand	Explain antibiotic resistance and its
				(U)	implications.
6	2	CO4	PSO6	Understand	Explain bioremediation and its importance
				(U)	for the environment.
7	2	CO2	PSO5	Understand	Describe the role of microorganisms in
				(U)	vaccine development.
8	2	CO3	PSO5	Understand	List two applications of microorganisms in
				(U)	biotechnology.
9	2	CO2	PSO5	Understand	Define the human microbiome and explain
				(U)	its significance.
10	2	CO4	PSO6	Understand	Discuss ethical concerns related to
				(U)	genetically modifying microorganisms.
11	6	CO3	PSO5	Analyze	Discuss the role of microorganisms in food
				(An)	spoilage and prevention methods.
12	6	CO3	PSO5	Understand	Explain the contribution of microorganisms
				(U)	to biofuel production.
13	6	CO2	PSO1	Understand	Explain how the human body defends
				(U)	against microbial infections.
14	6	CO3	PSO5	Analyze	Describe the role of microorganisms in soil
				(An)	fertility and agriculture.
15	6	CO2	PSO1	Understand	Explain the mechanisms by which
				(U)	microorganisms cause diseases.
16	10	CO4	PSO6	Analyze	Evaluate the role of microorganisms in
				(An)	biodegradation and waste management.
17	10	CO5	PSO6	Analyze	Analyze the challenges and future
				(An)	prospects of microbial applications.